Домой Ортопедия Избранные главы из книги "современная силовая тренировка. теория и практика"

Избранные главы из книги "современная силовая тренировка. теория и практика"

Ключевую роль в осуществлении движения как основополагающего свойства живого организма играют мышцы. У человека мышцы составляют от 40% до 50% массы тела (Одноралов Н.И.,1965; Бегун П.И., Шукейло Ю.А.,2000; Финандо Д., Финандо С.,2001; Lockart R.D. и соавт.,1969). Мышечная система человека имеет три важнейшие функции (Финандо Д., Финандо С.,2001; Иваничев Г.А., Старосельцева Н.Г,2002):

  • первая функция - поддержание тела и внутренних органов;
  • вторая функция - движения тела в целом, его отдельных частей и внутренних органов;
  • третья функция - метаболическая.

Все мышцы человеческого организма имеют общие основные свойства , которые имеют важное значение для функционирования мышечной системы и дополняют друг друга:

1. возбудимость - способность воспринимать нервный импульс и отвечать на него;

2. сократимость - способность укорочения при получении соответствующего стимула;

3. растяжимость - способность удлиняться под воздействием внешней силы;

4. эластичность - способность возвращаться к нормальной форме после сокращения или растяжения.

Мышечная система человека представлена мышцами трех следующих типов:

1. скелетные мышцы;

2. висцеральные мышцы;

3. мышца сердца.

Главным объектом данного учебного пособия являются скелетные мышцы, связанные с движениями позвоночника и конечностей. Они предназначены для выполнения статических и динамических задач человеческого организма. Для статики они должны отвечать следующим требованиям :

1. противостоять силам гравитации с минимальной затратой энергии, обеспечивая силовой баланс между частями опорно-двигательного аппарата;

2. обеспечивать постоянство внутреннего эндоритма составляющих элементов опорно-двигательного аппарата.

Для динамики скелетные мышцы человека должны выполнять следующие функции:

  • совершать движения различными регионами позвоночника и конечностей в определенной последовательности в виде перемещения тела или его частей адекватно цели, в соответствующем объеме;
  • ограничивать распространение этого движения на соседние регионы, обеспечивать однонаправленность выполнения движения.

Скелетные мышцы - это поперечно-полосатые мышцы Общее число скелетных мышц в теле человека - более 600 (Бегун П.И., Шукейло Ю.А,2000). Каждая скелетная мышца является единым органом, обладающим сложной структурной организацией (Хабиров ФА, Хабиров Р.А.,1995; Петров К Б.,1998; Бегун П.И., Шукейло Ю А,2000; Иваничев Г.А, Старосельцева Н.Г.,2002). Всякое мышечное волокно является многоядерной цилиндрической клеткой, окруженной мембраной - сарколеммой. Мышечные клетки содержат смещенные к периферии ядра и миофибриллы.

Поперечные мембраны разделяют каждую миофибриллу на саркомеры - структурные единицы миофибрилл, обладающие способностью сокращаться. Каждая миофибрилла представляет собой цепь, составленную из филаментов. Различают толстые филаменты - темные, анизотропные, состоящие из миозина, и тонкие миофиламенты - белые, изотропные, состоящие из актина. Белки актин и миозин составляют актиномиозиновый комплекс, который обеспечивает под влиянием аденозинтрифосфорной кислоты мышечное сокращение. Каждое мышечное волокно окружает соединительно-тканная оболочка - эндомизиум, группу волокон - перимизиум, всю мышцу - эпимизиум.

Скелетные мышцы крепятся к костям посредством соединительной части мышцы - сухожилия. К вспомогательному аппарату мышц относятся фасции, синовиальные сумки, влагалища сухожилий, сесамовидные кости. Фасции - это фиброзные оболочки, покрывающие мышцы и их отдельные группы. Синовиальные сумки, содержащие синовиальную жидкость, являются внесуставными полостями, предохраняющими мышцу от повреждения, уменьшающими трение. Влагалища сухожилий предназначены для защиты сухожилий мышц от тесного прилежания к костям, что облегчает работу мышц. В толще некоторых мышц имеются сесамовидные кости, улучшающие работу мышц. Самая большая сесамовидная кость - надколенник, расположена в сухожилии четырехглавой мышцы бедра.

В поперечно-полосатой мышечной ткани выделяют три типа волокон (Сапрыкин В.П., Турбин Д.А.,1997, Макарова И Н., Епифанов В.А, 2002):

1 тип - красные, медленные;

2 тип - быстрые:

А - промежуточные, красные,

В - белые.

Мышца человека содержит и белые, и красные волокна, но в разных соотношениях. Медленные красные волокна 1 типа обладают хорошо развитой капиллярной сетью, большим количеством митохондрий и высокой активностью окислительных ферментов, что определяет их существенную аэробную выносливость при выполнении работы продолжительное время (Иваничев Г.А., Старосельцева Н.Г,2002). Быстрые красные волокна 2 типа А занимают промежуточное положение между красными медленными волокнами и белыми быстрыми волокнами. Отличительной особенностью промежуточных красных волокон, относящихся к быстрым, является их способность использовать энергию при гликолизе как по аэробному, так и по анаэробному циклам Кребса.

Быстрые красные волокна являются мало утомляемыми мышечными волокнами. Мышечные волокна белые содержат большое количество миофибрилл, благодаря которому развивается большая сила сокращения. Они относятся к быстрым волокнам 2 типа В. Быстрые мышечные волокна содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, имеют незначительную сеть капилляров. Аэробная выносливость этих волокон невелика. Они легко и быстро утомляются.

Скелетные мышцы человека состоят из экстрафузальных мышечных волокон, специализируемых на сократительной функции, и интрафузальных мышечных волокон, представляющих нервно-мышечное веретено (Хабиров Ф.А., Хабиров Р.А.,1995).

Сложный аппарат обеспечения движений включает в себя афферентную и эфферентную части (Карлов В.А.,1999; Ходос X.-Б.Г.,2001).

Красноярова Н.А.

Анатомо-физиологические особенности скелетных мышц и тесты для их исследования

Строение мышцы:

А - внешний вид двуперистой мышцы; Б - схема продольного разреза многоперистой мышцы; В - поперечный разрез мышцы; Г - схема строения мышцы как органа; 1, 1" - сухожилие мышц; 2 - анатомический поперечник мышечного брюшка; 3 - ворота мышцы с сосудисто-нервным пучком (а - артерия, в - вена, п - нерв); 4 - физиологический поперечник (суммарный); 5 - подсухожильная бурса; 6-6" - кости; 7 - наружный перимизий; 8 - внутренний перимизий; 9 - эндомизий; 9"-мышечные волокна; 10, 10", 10" - чувствительные нервные волокна (несут импульс от мышцы, сухожилий, сосудов); 11, 11" - двигательные нервные волокна (несут импульс в мышцы, сосуды)

СТРОЕНИЕ СКЕЛЕТНОЙ МЫШЦЫ КАК ОРГАНА

Скелетные мышцы - musculus skeleti - являются активными органами аппарата движения. В зависимости от функциональных потребностей организма они могут изменять взаимоотношения между костными рычагами (динамическая функция) или укреплять их в определенном положении (статическая функция). Скелетные мышцы, выполняя сократительную функцию, значительную часть химической энергии, полученную с пищей, трансформируют в тепловую энергию (до 70%) и в меньшей степени в механическую работу (около 30%). Поэтому при сокращении мышца выполняет не только механическую работу, но и служит основным источником тепла в организме. Вместе с сердечно–сосудистой системой скелетные мышцы активно участвуют в обменных процессах и использовании энергетических ресурсов организма. Наличие в мышцах большого числа рецепторов способствует восприятию мышечно–суставного чувства, которое совместно с органами равновесия и органами зрения обеспечивает выполнение точных мышечных движений. Скелетные мышцы в совокупности с подкожной клетчаткой содержат до 58% воды, выполняя тем самым важную роль основных депо воды в организме.

Скелетная (соматическая) мускулатура представлена большим количеством мышц. Каждая мышца имеет опорную часть - соединительнотканную строму и рабочую часть - мышечную паренхиму. Чем большую статическую нагрузку выполняет мышца, тем больше развита в ней строма.

Снаружи мускул одет соединительнотканной оболочкой, которая называется наружным перимизием

Perimysium . На различных мышцах он разной толщины. От наружного перимизия внутрь отходят соединительнотканные перегородки - внутренний перимизий, окружающий мышечные пучки различной величины. Чем большую статическую функцию несет мышца, тем более мощные соединительнотканные перегородки в ней расположены, тем их больше. На внутренних перегородках в мышцах могут закрепляться мышечные волокна, проходят сосуды и нервы. Между мышечными волокнами проходят очень нежные и тонкие соединительнотканные прослойки, называемые эндомизием -endomysium .

В строме мышцы, представленной наружным и внутренним перимизием и эндомизием, упакована мышечная ткань (мышечные волокна, образующие мышечные пучки), формирующая различной формы и величины мышечное брюшко. Строма мышцы по концам мышечного брюшка образует сплошные сухожилия, форма которых зависит от формы мышц. Если сухожилие шнурообразно, оно называется просто сухожилием - tendo . Если сухожилие плоское, идет от плоского мускульного брюшка, то оно называется, апоневрозом –aponeurosis .

В сухожилии также различают наружные и внутренние оболочки (мезотендиний - mesotendineum ). Сухожилия очень плотны, компактны, образуют прочные шнуры, обладающие большой сопротивляемостью на разрыв. Коллагеновые волокна и пучки в них расположены строго продольно, благодаря чему сухожилия становятся менее утомляемой частью мышцы. Закрепляются сухожилия на костях, проникая волокнами в толщу костной ткани (связь с костью настолько крепка, что скорее разорвется сухожилие, чем оно оторвется от кости). Сухожилия могут переходить на поверхность мышцы и покрывать их на большем или меньшем расстоянии, образуя блестящую оболочку, которая называется сухожильным зеркалом.

В определенных участках в мышцу входят сосуды, ее кровоснабжающие, и нервы, ее иннервирующие. Место вступления их называется воротами органа. Внутри мышцы сосуды и нервы разветвляются по внутреннему перимизию и доходят до его рабочих единиц - мышечных волокон, на которых сосуды образуют сети капилляров, а нервы разветвляются на:

1) чувствительные волокна - идут от чувствительных нервных окончаний проприорецепторов, расположенных во всех участках мышц и сухожилий, и выносят импульс, направляющийся через клетку спинального ганглия в мозг;

2) двигательные нервные волокна, проводящие импульс от мозга:

а) к мышечным волокнам, заканчиваются на каждом мышечном волокне особой моторной бляшкой,

б) к сосудам мышц - симпатические волокна, несущие импульс от мозга через клетку симпатического ганглия к гладким мышцам сосудов,

в) трофические волокна, заканчивающиеся на соединительнотканной основе мышцы. Поскольку рабочей единицей мышц является мышечное волокно, то именно их количество определяет

силу мышцы; не от длины мышечных волокон, а от количества их в мышце зависит сила мышцы. Чем больше мышечных волокон в мышце, тем она сильнее. При сокращении мышца укорачивается на половину своей длины. Чтобы подсчитать количество мышечных волокон, делают разрез перпендикулярно их продольной оси; полученная площадь поперечно перерезанных волокон - это физиологический поперечник. Площадь разреза всей мышцы перпендикулярная ее продольной оси называется анатомическим поперечником. В одной и той же мышце может быть один анатомический и несколько физиологических поперечников, образовавшихся в том случае, если в мышце мышечные волокна короткие и имеют различное направление. Так как сила мышцы зависит от количества мышечных волокон в них, то она выражается отношением анатомического поперечника к физиологическому. В мышечном брюшке имеется всего один анатомический поперечник, а физиологических может быть различное количество (1:2, 1:3, ..., 1:10 и т. д.). Большое количество физиологических поперечников свидетельствует о силе мышцы.

Мышцы бывают светлые и темные. Цвет их зависит от функции, строения и кровенаполнения. Темные мышцы богаты миоглобином (миогематином) и саркоплазмой, они более выносливые. Светлые мышцы беднее этими элементами, они более сильные, но менее выносливые. У разных животных, в различном возрасте и даже в разных участках тела цвет мышц бывает различен: у лошадей мышцы темнее, чем у других видов животных; у молодняка светлее, чем у взрослых; на конечностях темнее, чем на теле.

КЛАССИФИКАЦИЯ МЫШЦ

Каждая мышца является самостоятельным органом и имеет определенную форму, величину, строение, функцию, происхождение и положение в организме. В зависимости от этого все скелетные мышцы подразделяются на группы.

Внутренняя структура мышцы.

Скелетные мышцы по взаимоотношениям мышечных пучков с внутримышечными соединительнотканными образованиями могут иметь самое различное строение, что, в свою очередь, обусловливает их функциональные различия. О силе мышц принято судить по количеству мышечных пучков, определяющих величину физиологического поперечника мышцы. Отношение физиологического поперечника к анатомическому, т.е. соотношение площади поперечного сечения мышечных пучков к наибольшей площади поперечного сечения мышечного брюшка, дает возможность судить о степени выраженности ее динамических и статических свойств. Различия в этих соотношениях позволяют подразделять скелетные мышцы на динамические, динамо– статические, статодинамические и статические.

Проще всего построены простые динамические мышцы . В них нежный перимизий, мышечные волокна длинные, идут вдоль продольной оси мышцы или под некоторым углом к ней, в связи с чем анатомический поперечник совпадает с физиологическим 1:1. Эти мышцы обычно связаны больше с динамической нагрузкой. Обладая большой амплитудой: они обеспечивают большой размах движения, но сила их небольшая – эти мышцы относятся к быстрым, ловким, но и быстро утомляющимся.

Статодинамические мышцы имеют более сильно развитый перимизий (и внутренний и наружный) и более короткие мышечные волокна, идущие в мышцах в различных направлениях, т. е. образующие уже

Классификация мышц: 1 – односуставные, 2 – двусуставные, 3 – многосуставные, 4 – мышцы–связки.

Типы строения статодинамических мышц: а – одноперистая, б – двуперистая, в – многоперистая, 1 – сухожилия мышц, 2 – пучки мышечных волокон, 3 – сухожильные прослойки, 4 – анатомический поперечник, 5 – физиологический поперечник.

множество физиологических поперечников. По отношению к одному общему анатомическому поперечнику в мышце может оказаться 2, 3, 10 физиологических поперечников (1:2, 1:3, 1:10), что дает основание говорить о том, что статодинамические мышцы сильнее динамических.

Статодинамические мышцы выполняют в большей мере статическую функцию во время опоры, удерживая разогнутыми суставы при стоянии животного, когда под действием массы тела суставы конечностей стремятся согнуться. Вся мышца может быть пронизана сухожильным тяжем, который дает возможность во время статической работы выполнять роль связки, снимая нагрузку с мышечных волокон и становясь мышечным фиксатором (двуглавая мышца у лошадей). Для этих мышц характерна большая сила и значительная выносливость.

Статические мышцы могут развиться в результате большой статической нагрузки, падающей на них. Мышцы, подвергшиеся глубокой перестройке и почти полностью утратившие мышечные волокна, фактически превращается в связки, которые способны выполнять лишь статическую функцию. Чем ниже на теле расположены мышцы, тем более они статичны по структуре. Они выполняют большую статическую работу при стоянии и опоре конечности о почву во время движения, закрепляя суставы в определенном положении.

Характеристика мышц по действию.

Согласно функции каждая мышца обязательно имеет два пункта закрепления на костных рычагах - головкой и сухожильным окончанием - хвостом, или апоневрозом. В работе один из этих пунктов будет неподвижной точкой опоры - punctum fixum , второй - подвижной -punctum mobile. У большинства мышц, особенно конечностей, эти пункты меняются в зависимости от выполняемой функции и местонахождения точки опоры. Мышца, закрепленная на двух пунктах (голове и плече), может двигать головой, когда неподвижная точка опоры ее на плече, и, наоборот, будет двигать плечом, если во время движенияpunctum fixum этой мышцы будет на голове.

Мышцы могут действовать только на один или два сустава, но чаще они являются многосуставными. Каждая ось движения на конечностях обязательно имеет две группы мышц с противоположным действием.

При движении по одной оси обязательно будут мышцы-сгибатели -флексоры и разгибатели -экстензоры , в некоторых суставах возможно приведение -аддукция , отведение -абдукция или вращение -ротация , причем вращение в медиальную сторону называетсяпронацией , а вращение наружу в латеральную сторону -супинацией .

Выделяются еще мышцы - напрягатели фасций - тензоры . Но при этом обязательно надо помнить, что в зависимости от характера нагрузки одна и та же

многосуставная мышца может работать как флексор одного сустава или как экстензор другого сустава. Примером может быть двуглавая мышца плеча, которая может оказывать действие на два сустава - плечевой и локтевой (закрепляется на лопатке, перебрасывается через вершину плечевого сустава, проходит внутри угла локтевого сустава и закрепляется на лучевой кости). При висячей конечности punctum fixum у двуглавой мышцы плеча будет в области лопатки, в этом случае мышца тянет вперед, лучевую кость и локтевой сустав сгибает. При опоре конечности о почвуpunctum fixum находится в области конечного сухожилия на лучевой кости; мышца работает уже как экстензор плечевого сустава (удерживает плечевой сустав в разогнутом состоянии).

Если мышцы оказывают противоположное действие на сустав, они называются антагонистами . Если их действие осуществляется в одном направлении, они называются «сотоварищами» -синергистами . Все мышцы, сгибающие один и тот же сустав, будут синергистами, экстензоры этого сустава по отношению к флексорам будут антагонистами.

Вокруг естественных отверстий расположены мышцы–запиратели -сфинктеры , для которых характерно круговое направление мышечных волокон;констрикторы , или суживатели, которые также

относятся к типу круглых мышц, но имеют иную форму; дилататоры , или расширители, при сокращении открывают естественные отверстия.

По анатомическому строению мышцы делятся в зависимости от количества внутримышечных сухожильных прослоек и направления мышечных прослоек:

одноперистые - для них характерно отсутствие сухожильных прослоек и мышечные волокна присоединяются к сухожилию одной стороны;

двуперистые - для них характерно наличие одной сухожильной прослойки и мышечные волокна присоединяются к сухожилию с двух сторон;

многоперистые - для них характерно наличие двух и более сухожильных прослоек, в результате этого мышечные пучки сложно переплетаются и к сухожилию подходят с нескольких сторон.

Классификация мышц по форме

Среди огромного многообразия мышц по форме можно выделить условно следующие основные типы: 1) Длинные мышцы соответствуют длинным рычагам движения и поэтому встречаются главным образом на конечностях. Имеют веретенообразную форму, средняя часть называется брюшком, конец, соответствующий началу мышцы, - головкой, противоположный конец - хвостом. Сухожилие длинных мышц имеет форму ленты. Некоторые длинные мышцы начинаются несколькими головками (многоглавые)

на различных костях, что усиливает их опору.

2) Короткие мышцы находятся на тех участках тела, где размах движений невелик (между отдельными позвонками, между позвонками и ребрами и т.д.).

3) Плоские (широкие) мышцы располагаются преимущественно на туловище и поясах конечностей. Они имеют расширенное сухожилие, называемое апоневрозом. Плоские мышцы обладают не только двигательной функцией, но также опорной и защитной.

4) Встречаются также и другие формы мышц: квадратная ,круговая ,дельтовидная ,зубчатая ,трапециевидная ,веретеновидная и др.

ВСПОМОГАТЕЛЬНЫЕ ОРГАНЫ МЫШЦ

При работе мышц часто создаются условия, снижающие эффективность их работы, особенно на конечностях, когда направление мышечной силы при сокращении происходит параллельно направлению плеча рычага. (Самое выгодное действие мышечной силы тогда, когда она направлена под прямым углом к плечу рычага.) Однако недостаток этого параллелизма в работе мышц устраняется рядом дополнительных приспособлений. Так, например, в местах приложения силы кости имеют бугры, гребни. Под сухожилия подкладываются специальные косточки (или вправляются между сухожилиями). В местах сочленения кости утолщаются, отделяя мышцу от центра движения в суставе. Одновременно с эволюцией мышечной системы тела развиваются как неотъемлемая ее часть вспомогательные приспособления, улучшающие условия работы мышц и помогающие им. К ним относятся фасции, бурсы, синовиальные влагалища, сесамовидные косточки, специальные блоки.

Вспомогательные органы мышц:

А - фасции в области дистальной трети голени лошади (на поперечном разрезе), Б - удерживатели и синовиальные влагалища сухожилий мышц в области заплюсневого сустава лошади с медиальной поверхности, В - фиброзное и синовиальное влагалища на продольном и В" - поперечном срезах;

I - кожа, 2 - подкожная клетчатка, 3 - поверхностная фасция, 4 - глубокая фасция, 5 собственная фасция мышц, 6 - собственная фасция сухожилия (фиброзное влагалище), 7 - соединения поверхностной фасции с кожей, 8 - межфасциалъные соединения, 8 - сосудисто-нервный пучок, 9 - мышцы, 10 - кость, 11 - синовиальные влагалища, 12 - удерживатели разгибателей, 13 - удерживатели сгибателей, 14 - сухожилие;

а - париетальный и b - висцеральный листки синовиального влагалища, с - брыжейка сухожилия, d - места перехода париетального листка синовиального влагалища в его висцеральный листок, е - полость синовиального влагалища

Фасции.

Каждая мышца, группа мышц и вся мускулатура тела одеты специальными плотными фиброзными оболочками, называемыми фасциями - fasciae . Они плотно притягивают мышцы к скелету, фиксируют их положение, способствуя уточнению направления силы действия мышц и их сухожилий, поэтому хирурги называют их футлярами мышц. Фасции отграничивают мышцы друг от друга, создают опору для мышечного брюшка при его сокращении и устраняют трение мышц друг от друга. Фасции еще называют мягким скелетом (считают остатком перепончатого скелета предков - позвоночных). Они помогают и в опорной функции костного скелета - натяжение фасций при опоре снижает нагрузку на мышцы, смягчает ударную нагрузку. В этом случае фасции берут на себя амортизационную функцию. Они богаты рецепторами и сосудами, в связи с чем вместе с мышцами обеспечивают мышечно–суставное чувство. Весьма существенную роль играют в регенерационных процессах. Так, если при удалении пораженного хрящевого мениска в коленном суставе на его место вживить лоскут фасции, не потерявшей связь с основным ее пластом (сосудами и нервами), то при определенной тренировке через некоторое время на ее месте дифференцируется орган с выполнением функции мениска, работа сустава и конечности в целом восстанавливается. Таким образом, изменяя локальные условия биомеханической нагрузки на фасции, можно их использовать как источник ускоренной регенерации структур опорно–двигательного аппарата при аутопластике хрящевой и костной тканей в восстановительной и реконструктивной хирургии.

С возрастом фасциальные футляры утолщаются, делаются более прочными.

Под кожей туловище покрыто поверхностной фасцией и связано с ней рыхлой соединительной тканью. Поверхностная, или подкожная, фасция - fascia superficialis, s. subcutanea - отделяет кожу от поверхностных мышц. На конечностях она может иметь прикрепления на коже и костных выступах, что способствует через посредство сокращений подкожных мышц осуществлению сотрясений кожного покрова, как это имеет место у лошадей, когда они освобождаются от назойливых насекомых или при стряхивании приставшего к коже мусора.

На голове под кожей расположена поверхностная фасция головы – f. superficialis capitis , в которой заключены мышцы головы.

Шейная фасция – f. cervicalis лежит вентрально в области шеи и прикрывает трахею. Различают фасцию шеи и грудобрюшную фасцию. Каждая из них соединяется друг с другом дорсально вдоль надостистой и выйной связок и вентрально - по срединной линии живота - белой линии -linea alba.

Шейная фасция лежит вентрально, прикрывая трахею. Ее поверхностный лист закрепляется на каменистой части височной кости, подъязычной кости и крае крыла атланта. Она переходит в фасции глотки, гортани и околоушную. Затем идет вдоль длиннейшей мышцы головы, дает межмышечные перегородки в этой области и достигает лестничной мышцы, сливаясь с ее перимизием. Глубокая пластина этой фасции отделяет вентральные мышцы шеи от пищевода и трахеи, закрепляется на межпоперечных мышцах, впереди переходит на фасции головы, а каудально достигает первого ребра и грудины, следуя дальше как внутригрудная фасция.

С шейной фасцией связана шейная подкожная мышца - m. cutaneus colli . Она идет вдоль шеи, ближе к

ее вентральной поверхности и переходит на лицевую поверхность к мышцам рта и нижней губы. Грудопоясничная фасция – f. thoracolubalis лежит дорсально на туловище и закрепляется на остистых

отростках грудных и поясничных позвонков и маклоке. Фасция образует поверхностную и глубокую пластину. Поверхностная закрепляется на маклоке и остистых отростках позвонков поясничного и грудного отделов. В области холки она закрепляется на остистых и поперечных отростках и называется поперечно–остистой фасцией. На ней закрепляются мышцы, идущие на шею и к голове. Глубокая пластина расположена только на пояснице, закрепляется на поперечно–реберных отростках и дает начало некоторым брюшным мышцам.

Грудобрюшная фасция – f. thoracoabdominalis лежит латерально по бокам от грудной и брюшной полости и закрепляется вентрально по белой линии живота –linea alba .

С грудобрюшной поверхностной фасцией связана грудобрюшная, или кожная, мышца туловища - m. cutaneus trunci - довольно обширная по площади с продольно идущими волокнами. Расположена она по бокам от грудной и брюшной стенок. Каудально отдает пучки в коленную складку.

Поверхностная фасция грудной конечности – f. superficialis membri thoracici является продолжением грудобрюшной фасции. Она значительно утолщена в области запястья и формирует фиброзные влагалища для сухожилий мышц, которые здесь проходят.

Поверхностная фасция тазовой конечности – f. superficialis membri pelvini является продолжением грудопоясничной и значительно утолщена в области заплюсны.

Под поверхностной фасцией расположена глубокая, или собственно фасция – fascia profunda . Она окружает конкретные группы мышц–синергистов или отдельные мышцы и, прикрепляя их в определенном положении на костной основе, обеспечивает им оптимальные условия для самостоятельных сокращений и предотвращает их боковые смещения. В отдельных участках тела, где требуется более дифференцированное движение, от глубокой фасции отходят межмышечные связи и межмышечные перегородки, образующие обособленные фасциальные футляры для отдельных мышц, которые часто относят к собственным фасциям(fascia propria). Там, где требуется групповое усилие мышц, межмышечные перегородки отсутствуют и глубокая фасция, приобретая особенно мощное развитие, имеет четко выраженные тяжи. За счет местных утолщений глубокой фасции в области суставов образуются поперечные, или кольцевидной формы, перемычки: сухожильные дуги, удерживатели сухожилий мышц.

В области головы поверхностная фасция делится на следующие глубокие: Лобная фасция идет со лба на спинку носа; височная - по височной мышце; околоушно-жевательная покрывает околоушную слюнную железу и жевательную мышцу; щечная идет в области боковой стенки носа и щеки и подчелюстная - с вентральной стороны между телами нижней челюсти. Щечно-глоточная фасция идет с каудальной части щечной мышцы.

Внутригрудная фасция – f. endothoracica выстилает внутреннюю поверхность грудной полости. Поперечно–брюшная фасция – f. transversalis выстилает внутреннюю поверхность брюшной полости.Тазовая фасция – f. pelvis выстилает внутреннюю поверхность тазовой полости.

В области грудной конечности поверхностная фасция делится на следующие глубокие: фасции лопатки, плеча, предплечья, кисти, пальцев.

В области тазовой конечности поверхностная фасция делится на следующие глубокие: ягодичную (покрывает область крупа), фасции бедра, голени, стопы, пальцев

Во время движения фасции играют важную роль в качестве приспособления для присасывания крови и лимфы из нижележащих органов. С мышечных брюшков фасции переходят на сухожилия, окружают их и закрепляются на костях, удерживая сухожилия в определенном положении. Такой фиброзный футляр в виде трубки, через которую проходят сухожилия, называется фиброзным влагалищем сухожилия - vagina fibrosa tendinis . Фасция в определенных местах может утолщаться, образуя лентообразные кольца вокруг сустава, притягивающие группу сухожилий, перебрасывающихся через него. Их еще называют кольцевыми связками. Эти связки особенно хорошо выражены в области запястья и заплюсны. В отдельных местах фасция является местом закрепления мышцы, которая ее напрягает,

В местах большого напряжения, особенно при статической работе, фасции утолщаются, волокна их приобретают различное направление, не только способствуя укреплению конечности, но и выполняя роль пружинящего, амортизационного приспособления.

Бурсы и синовиальные влагалища.

Для того чтобы предотвратить трение мышц, сухожилий или связок, смягчить их соприкосновение с другими органами (костью, кожей и т. д.), облегчить скольжение при больших размахах движения, между листами фасций образуются щели, выстланные оболочкой, выделяющей в образовавшуюся полость слизь или синовию, в зависимости от чего различают синовиальные и слизистые бурсы. Слизистые бурсы – bursa mucosa – (изолированные «мешочки»), образованные в уязвимых местах под связками, называются подсвязочными, под мышцами - подмышечными, под сухожилиями - подсухожильными, под кожей - подкожными. Полость их заполнена слизью и они могут быть постоянными или временными (мозоли).

Бурса, которая образуется за счет стенки капсулы сустава, благодаря чему ее полость сообщается с полостью сустава, называется синовиальной бурсой - bursa synovialis . Такие бурсы заполнены синовией и расположены главным образом в областях локтевого и коленного суставов, и их поражение угрожает суставу – воспаление этих бурс вследствие травмы может привести к артриту, поэтому в дифференциальной диагностике знание расположения и строении синовиальных бурс необходимо, оно определяет лечение и прогноз болезни.

Несколько сложнее построены синовиальные влагалища сухожилий –vagina synovialis tendinis , в которых проходят длинные сухожилия, перебрасываясь через запястный, заплюсневый и путовый суставы. Синовиальное влагалище сухожилий отличается от синовиальной сумки тем, что имеет гораздо большие размеры (длину, ширину) и двойную стенку. Оно полностью охватывает движущееся в нем сухожилие мышцы, вследствие этого синовиальное влагалище не только выполняет функцию бурсы, но и укрепляет положение сухожилия мышцы на значительном ее протяжении.

Подкожные бурсы лошади:

1 - подкожная затылочная бурса, 2 - подкожная париетальная бурса; 3 - подкожная скуловая бурса, 4 - подкожная бурса угла нижней челюсти; 5 - подкожная предгрудинная бурса; 6 - подкожная локтевая бурса; 7 - подкожная латеральная бурса локтевого сустава, 8 - подсвязочная бурса локтевого разгибателя запястья; 9 - подкожная бурса абдуктора первого пальца, 10 - медиальная подкожная бурса запястья; 11 - подкожная предкарпальная бурса; 12 - латеральная подкожная бурса; 13 - пальмарная (статарная) подкожная пальцевая бурса; 14 - подкожная бурса четвертой пястной кости; 15, 15" - медиальная и латеральная подкожные бурсы лодыжки; /6 - подкожная пяточная бурса; 17 - подкожная бурса большеберцовой шероховатости; 18, 18" - подфасциальная подкожная предколенная бурса; 19 - подкожная седалищная бурса; 20 - подкожная вертлужная бурса; 21 - подкожная бурса крестца; 22, 22" - подфасциальная подкожная бурса маклока; 23, 23" - подкожная подсвязочная бурса надостистой связки; 24 - подкожная предлопаточная бурса; 25, 25" - подсвязочные каудальная и краниальная бурсы выйной связки

Синовиальные влагалища образуются внутри фиброзных влагалищ, закрепляющих длинные сухожилия мышц при их прохождении через суставы. Внутри стенка фиброзного влагалища выстилается синовиальной оболочкой, образуя париетальный (наружный) лист этой оболочки. Сухожилие, проходящее через этот участок, тоже покрыто синовиальной оболочкой, еевисцеральным (внутренним) листом . Скольжение во время движения сухожилия происходит между двумя листками синовиальной оболочки и синовии, находящейся между этими листками. Два листка синовиальной оболочки связаны между собой тонкой двухслойной и короткой брыжейкой - переходом париентального листа в висцеральный. Синовиальное влагалище, таким образом, представляет собой тончайшую двухслойную замкнутую трубочку, между стенками которой находится синовиальная жидкость, способствующая скольжению в ней длинного сухожилия. При травмах в области суставов, где имеются синовиальные влагалища, приходится дифференцировать источники выделяющейся синовии, выясняя, вытекает она из сустава или синовиального влагалища.

Блоки и сесамовидные кости.

Способствуют улучшению условии работы мышц блоки и сесамовидные косточки. Блоки – trochlea – это определенной формы участки эпифизов трубчатых костей, через которые перекидываются мышцы. Они представляет собой костный выступ и желобок в нем, где проходит сухожилие мышц, благодаря чему сухожилия не смещаются в сторону и увеличивается рычаг приложения силы. Блоки образуются там, где требуется изменение направления действия мышцы. Они покрыты гиалиновым хрящом, улучшающим скольжение мышцы, здесь же нередко имеются синовиальные сумки или синовиальные влагалища. Блоки имеют плечевая и бедренная кости.

Сезамовидные кости – ossa sesamoidea – представляют собой костные образования, которые могут образовываться как внутри сухожилий мышц, так и в стенке капсулы сустава. Они формируются в области очень сильного напряжения мышц и обнаруживаются в толще сухожилий. Располагаются сесамовидные кости или на вершине сустава, или на выступающих краях сочленяющихся костей, или там, где требуется создать подобие мышечного блока, чтобы изменить направление усилий мышцы при ее сокращении. Они изменяют угол прикрепления мышц и тем самым улучшают условия их работы, уменьшая трение. Иногда их называют «окостеневшими участками сухожилий», но необходимо помнить, что они проходят только две стадии развития (соединительнотканную и костную).

Самая крупная сесамовидная кость - коленная чашечка - patella вправлена в сухожилия четырехглавой мышцы бедра и скользит по надмыщелкам бедренной кости. Более мелкие сесамовидные косточки расположены под сухожилиями пальцевых сгибателей с пальмарной и плантарной сторон путового (по две на каждый) сустава. Со стороны сустава эти косточки покрыты гиалиновым хрящом.

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

Морфологическая классификация

Поперечно-полосатая (поперечно-исчерченная)

Гладкая (неисчерченная)

Классификация по типу контроля мышечной актичности

Поперечно-полосатая мышечная ткань скелетного типа.

Гладкая мышечная ткань внутренних органов.

Поперечно-полосатая мышечная ткань сердечного типа

КЛАССИФИКАЦИЯ СКЕЛЕТНЫХ МЫШЕЧНЫХ ВОЛОКОН

ПОПЕРЕЧНО-ПОЛОСАТЫЕ МЫШЦЫ представляют собой максимально специализированый аппарат для осуществления быстрого сокращения. Поперечно-полосатые мышцы бывают двух типов - скелетные и сердечные. СКЕЛЕТНЫЕ мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. В зависимости от сократительных свойств, окраски и утомляемости мышечные волокна подразделяют на две группы - КРАСНЫЕ И БЕЛЫЕ. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию.

КРАСНЫЕ МЫШЕЧНЫЕ волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма (используют кислород). Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

БЕЛЫМ МЫШЕЧНЫМ ВОЛОКНАМ (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

КЛАССИФИКАЦИЯ ГЛАДКИХ МЫШЦ

Гладкие мышцы подразделяются на ВИСЦЕРАЛЬНЫЕ (УНИТАРНЫЕ) И МУЛЬТИУНИТАРНЫЕ . ВИСЦЕРАЛЬНЫЕ ГЛАДКИЕ мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К МУЛЫПИУНИТАРНЫМ относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В ВИСЦЕРАЛЬНЫХ ГЛАДКИХ мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток.

ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ . Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении - расслабляется.



2. АВТОМАТИЯ . ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ . В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

4. ПЛАСТИЧНОСТ Ь. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции :

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ :

1)ВОЗБУДИМОСТЬЮ - способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) ПРОВОДИМОСТЬЮ - способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3) СОКРАТИМОСТЬЮ - способностью укорачиваться или развивать напряжение при возбуждении;

4) ЭЛАСТИЧНОСТЬЮ - способностью развивать напряжение при растягивании.

Организм человека - сложная и многогранная система, каждая клетка, каждая молекула которой тесно взаимосвязана с другими. Находясь в гармонии друг с другом, они способны обеспечивать единство, которое, в свою очередь, проявляется в здоровье и долголетии, однако при малейшем сбое вся система может рухнуть в один миг. Как устроен этот сложный механизм? Благодаря чему поддерживается его полноценная работа и как предотвратить дисбаланс слаженной и в то же время чувствительной к внешнему воздействию системы? Эти и другие вопросы раскрывает анатомия человека.

Основы анатомии: науки о человеке

Анатомия - это наука, повествующая о внешнем и внутреннем устройстве организма в нормальном состоянии и при наличии всевозможных отклонений. Для удобства восприятия строение человека анатомия рассматривает в нескольких плоскостях, начиная с маленьких «песчинок» и заканчивая крупными «кирпичиками», составляющими единое целое. Такой подход позволяет выделить несколько уровней изучения организма:

  • молекулярный и атомный,
  • клеточный,
  • тканевой,
  • органный,
  • системный.

Молекулярный и клеточный уровни живого организма

Начальный этап изучения анатомии тела человека рассматривает организм как комплекс ионов, атомов и молекул. Как и большинство живых существ, человек образован всевозможными химическими соединениями, основу которых составляют углерод, водород, азот, кислород, кальций, натрий и другие микро- и макроэлементы. Именно эти вещества поодиночке и в комплексе служат основой молекул веществ, входящих в клеточный состав человеческого тела.

В зависимости от особенностей формы, размеров и выполняемых функций выделяют различные виды клеток. Так или иначе, каждая из них имеет схожее строение, присущее для эукариотов - наличие ядра и различных молекулярных компонентов. Липиды, белки, углеводы, вода, соли, нуклеиновые кислоты и т. д. вступают в реакции друг с другом, обеспечивая тем самым выполнение возложенных на них функций.

Строение человека: анатомия тканей и органов

Сходные по строению и функциям клетки в комплексе с межклеточным веществом образуют ткани, каждая из которых выполняет ряд определённых задач. В зависимости от этого в анатомии тела человека выделяют 4 группы тканей:

  • Эпителиальная ткань отличается плотной структурой и малым количеством межклеточного вещества. Такое строение позволяет ей отлично справляться с защитой организма от внешнего воздействия и всасыванием полезных веществ извне. Впрочем, эпителий присутствует не только во внешней оболочке организма, но и во внутренних органах, например, железах. Они быстро восстанавливаются практически без постороннего вмешательства, а потому считаются наиболее универсальными и прочными.
  • Соединительные ткани могут быть очень разнообразны. Они отличаются большим процентом межклеточного вещества, которое может быть любой структуры и плотности. В зависимости от этого варьируют и функции, возложенные на соединительные ткани, - они могут служить опорой, защитой и транспортом питательных веществ для остальных тканей и клеток организма.
  • Особенностью мышечной ткани является умение изменять свои размеры, то есть сокращаться и расслабляться. Благодаря этому она отлично справляется с координацией тела - перемещением как отдельных частей, так и целого организма в пространстве.
  • Нервная ткань - самая сложная и функциональная. Её клетки управляют большинством процессов, протекающих внутри других органов и систем, однако при этом не могут существовать самостоятельно. Всю нервную ткань условно можно разделить на 2 вида: нейроны и глии. Первые обеспечивают передачу импульсов по всему организму, а вторые оберегают и питают их.

Комплекс тканей, локализованный в определённой части организма, имеющий чёткую форму и выполняющий общую функцию, является самостоятельным органом. Как правило, орган представлен различными типами клеток, однако, какой-то определённый вид ткани всегда преобладает, а остальные носят, скорее, вспомогательный характер.

В анатомии человека органы принято условно классифицировать на наружные и внутренние. Наружное, или внешнее, строение человеческого тела можно увидеть и изучить без каких-либо специальных приборов или манипуляций, поскольку все части видны невооружённым глазом. К ним относятся голова, шея, спина, грудь, туловище, верхние и нижние конечности. В свою очередь, анатомия внутренних органов более сложна, поскольку для её изучения требуется инвазивное вмешательство, современные научно-медицинские приспособления или как минимум наглядный дидактический материал. Внутреннее строение представлено органами, находящимися внутри тела человека, - почками, печенью, желудком, кишечником, головным мозгом и т. д.

Системы органов в анатомии человека

Несмотря на то, что каждый орган выполняет какую-то определённую функцию, существовать по-отдельности они не могут - для нормальной жизнедеятельности необходима комплексная работа, поддерживающая функциональность целого организма. Именно поэтому анатомия органов не является самой высокой ступенью изучения тела человека - гораздо удобнее рассматривать устройство организма с системной точки зрения. Взаимодействуя друг с другом, каждая система обеспечивает работоспособность организма в целом.


В анатомии принято выделять 12 систем организма:

  • опорно-двигательный аппарат,
  • покровная система,
  • кроветворение,
  • сердечно-сосудистый комплекс,
  • пищеварение,
  • иммунная,
  • мочеполовой комплекс,
  • эндокринная система,
  • дыхание.

Чтобы детально изучить строение человека, рассмотрим каждую из систем органов более подробно. Краткий экскурс в основу анатомии человеческого тела поможет сориентироваться в том, от чего зависит полноценная работа организма в целом, как взаимодействуют ткани, органы и системы и каким образом сохранить здоровье.

Анатомия органов опорно-двигательной системы

Опорно-двигательный аппарат представляет собой каркас, который позволяет человеку свободно перемещаться в пространстве и поддерживает объёмную форму тела. Система включает скелет и мышечные волокна, которые тесно взаимодействуют друг с другом. Скелет определяет размеры и форму человека и формирует определённые полости, в которых помещены внутренние органы. В зависимости от возраста количество костей в скелетной системе варьирует в пределах выше 200 (у новорождённого 270, у взрослого 205–207), часть из которых выполняют функцию рычагов, а остальные остаются неподвижными, защищая органы от внешних повреждений. Кроме того, костные ткани участвуют в обмене микроэлементов, в частности, фосфора и кальция.


Анатомически скелет состоит из 6 ключевых отделов: пояса верхних и нижних конечностей плюс сами конечности, позвоночный столб и череп. В зависимости от выполняемых функций состав костей включает неорганические и органические вещества в разных пропорциях. Более прочные кости преимущественно состоят из минеральных солей, эластичные - из коллагеновых волокон. Наружный слой костей представлен очень плотной надкостницей, которая не только защищает костную ткань, но и обеспечивает ей необходимое для роста питание - именно из неё в микроскопические канальцы внутренней структуры кости проникают сосуды и нервы.

Соединительными элементами между отдельными костями служат суставы - своеобразные амортизаторы, которые позволяют изменять положение частей тела относительно друг друга. Впрочем, соединения между костными структурами могут быть не только подвижными: полуподвижные сочленения обеспечиваются хрящами различной плотности, а полностью неподвижные - костными швами в местах срастания.

Мышечная система приводит в действие весь этот сложный механизм, а также обеспечивает работу всех внутренних органов благодаря контролируемым и своевременным сокращениям. Скелетные мышечные волокна прилегают непосредственно к костям и отвечают за подвижность тела, гладкие служат основой сосудов и внутренних органов, а сердечные регулирует работу сердца, обеспечивая полноценный кровоток, а значит, жизнеспособность человека.


Поверхностная анатомия человеческого тела: покровная система

Наружное строение человека представлено кожей или, как её принято называть в биологии, дермой, и слизистыми оболочками. Несмотря на кажущуюся незначительность, эти органы играют важнейшую роль в обеспечении нормальной жизнедеятельности: вкупе со слизистыми кожа является огромной рецепторной площадкой, благодаря которой человек может тактильно ощущать различные формы воздействия, как приятные, так и опасные для здоровья.

Покровная система выполняет не только рецепторную функцию - её ткани способны защищать организм от разрушающего внешнего воздействия, выводить через микропоры токсичные и ядовитые вещества и регулировать колебания температуры тела. Составляя порядка 15 % от общей массы тела, она является важнейшей пограничной оболочкой, регулирующей взаимодействие человеческого тела и окружающей среды.

Система кроветворения в анатомии тела человека

Кроветворение является одним из основных процессов, поддерживающих жизнь внутри организма. Как биологическая жидкость кровь присутствует в 99 % всех органов, обеспечивая их полноценное питание, а значит, и функциональность. Вкупе органы кровеносной системы отвечают за образование форменных элементов крови: эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов, которые служат своеобразным зеркалом, отражающим состояние организма. Именно с общего анализа крови начинается диагностика абсолютного большинства заболеваний - функциональность органов кроветворения, а значит, и состав крови чувствительно реагирует на любое изменение внутри организма, начиная с банального инфекционного или простудного заболевания и заканчивая опасными патологиями. Такая особенность позволяет оперативно приспособиться к новым условиям и быстрее восстановиться, подключив иммунитет и другие резервные возможности организма.


Все выполняемые функции чётко разделены между органами, составляющими кроветворный комплекс:

  • лимфатические узлы гарантируют поставку плазматических клеток,
  • костный мозг формирует стволовые клетки, которые позднее трансформируются в форменные элементы,
  • периферические сосудистые системы служат для транспортировки биологической жидкости к другим органам,
  • селезёнка фильтрует кровь от омертвевших клеток.

Всё это в комплексе является сложным саморегулируемым механизмом, малейший сбой в котором чреват серьёзными патологиями, затрагивающими любую из систем организма.

Сердечно-сосудистый комплекс

Система, включающая сердце и все сосуды, начиная с самых крупных и заканчивая микроскопическими капиллярами диаметром в несколько микрон, обеспечивает циркуляцию крови внутри организма, питая, насыщая кислородом, витаминами и микроэлементами и очищая от продуктов распада каждую клеточку человеческого тела. Эту гигантскую по площади сложнейшую сеть нагляднее всего демонстрирует анатомия человека в картинках и схемах, поскольку теоретически разобраться, как и куда ведёт каждый конкретный сосуд, практически нереально - их количество в организме взрослого достигает 40 млрд и более. Тем не менее, вся эта сеть является сбалансированной замкнутой системой, организованной в 2 круга кровообращения: большой и малый.


В зависимости от объёма и выполняемых функций сосуды можно классифицировать следующим образом:

  1. Артерии - крупные трубчатые полости с плотными стенками, которые состоят из мышечных, коллагеновых и эластиновых волокон. По этим сосудам насыщенная молекулами кислорода кровь разносится от сердца к многочисленным органам, обеспечивая их полноценное питание. Единственным исключением является лёгочная артерия, по которой, в отличие от остальных, кровь движется к сердцу.
  2. Артериолы - более мелкие артерии, способные менять величину просвета. Они служат связующим звеном между объёмными артериями и мелкой капиллярной сетью.
  3. Капилляры - самые маленькие сосудики диаметром не более 11 мкм, сквозь стенки которых из крови в близлежащие ткани просачиваются молекулы питательных веществ.
  4. Анастомозы - артериоло-венулярные сосуды, обеспечивающие переход из артериол в венулу в обход сети капилляров.
  5. Венулы - такие же мелкие, как и капилляры, сосуды, которые обеспечивают отток крови, лишённой кислорода и полезных частиц.
  6. Вены - более крупные по сравнению с венулами сосуды, по которым обеднённая кровь с продуктами распада движется к сердцу.

«Двигателем» столь крупной замкнутой сети является сердце - полый мышечный орган, благодаря ритмичным сокращениям которого кровь продвигается по сосудистой сетке. При нормальной работе каждую минуту сердце перекачивает не менее 6 литров крови, а за день - примерно 8 тысяч литров. Неудивительно, что сердечные заболевания являются одними из самых серьёзных и распространённых, - с возрастом этот биологический насос изнашивается, поэтому необходимо тщательно отслеживать любые изменения в его работе.

Анатомия человека: органы пищеварительной системы

Пищеварение является сложным многоступенчатым процессом, в ходе которого поступившая в организм пища расщепляется на молекулы, переваривается и транспортируется к тканям и органам. Весь этот процесс начинается в ротовой полости, куда, собственно, и поступают питательные элементы в составе блюд, включённых в суточный рацион. Там крупные куски пищи подвергаются измельчению, после чего перемещаются в глотку и пищевод.


Желудок - полый мышечный орган в брюшной полости, является одним из ключевых звеньев пищеварительной цепочки. Несмотря на то, что переваривание начинается ещё в ротовой полости, основные процессы протекают именно в желудке - здесь часть веществ сразу всасывается в кровоток, а часть подвергается дальнейшему расщеплению под воздействием желудочного сока. Основные процессы протекают под воздействием соляной кислоты и ферментов, а слизь служит своего рода амортизатором для дальнейшей транспортировки пищевой массы в кишечник.

В кишечнике желудочное пищеварение сменяется кишечным. Поступающая из протока желчь нейтрализует действие желудочного сока и эмульгирует жиры, повышая их соприкосновение с ферментами. Далее, на протяжении всей длины кишечника, оставшаяся непереваренной масса расщепляется на молекулы и всасывается в кровоток через кишечную стенку, а всё, что остаётся невостребованным, выводится с каловыми массами.

Помимо основных органов, отвечающих за транспортировку и расщепление нутриентов, к пищеварительной системе относятся:

  • Слюнные железы, язык - отвечают за подготовку пищевого комка к расщеплению.
  • Печень - самая крупная в организме железа, которая регулирует синтез желчи.
  • Поджелудочная железа - орган, необходимый для выработки ферментов и гормонов, принимающих участие в метаболизме.

Значение нервной системы в анатомии тела

Комплекс, объединённый нервной системой, служит своего рода центром управления всеми процессами организма. Именно здесь регулируется работа тела человека, его способность воспринимать и реагировать на любой внешний раздражитель. Руководствуясь функциями и локализацией конкретных органов нервной системы, в анатомии тела принято выделять несколько классификаций:

Центральная и периферическая нервные системы

ЦНС, или центральная нервная система, - это комплекс веществ головного и спинного мозга. И тот, и другой одинаково хорошо защищены от травмирующих внешних воздействий костными структурами - спинной мозг заключён внутри позвоночного столба, а головной располагается в полости черепа. Такое строение организма позволяет предотвратить повреждения чувствительных клеток мозгового вещества при малейшем воздействии.


Периферическая нервная система отходит от позвоночного столба к различным органам и тканям. Она представлена 12 парами черепных и 31 парой спинномозговых нервов, по которым различные импульсы молниеносно передаются от мозга к тканям, стимулируя или, наоборот, подавляя их работу в зависимости от различных факторов и конкретной ситуации.

Соматическая и вегетативная нервные системы

Соматический отдел служит связующим элементом между окружающей средой и организмом. Именно благодаря этим нервным волокнам человек в состоянии не только воспринимать окружающую действительность (например, «огонь горячий»), но и адекватно на неё реагировать («значит, надо убрать руку, чтобы не получить ожог»). Такой механизм позволяет защитить тело от немотивированного риска, подстроиться под окружающую обстановку и правильно проанализировать информацию.

Вегетативная система более автономна, поэтому медленнее реагирует на влияние извне. Она регулирует деятельность внутренних органов - желёз, сердечно-сосудистой, пищеварительной и других систем, а также поддерживает оптимальный баланс во внутренней среде человеческого тела.

Анатомия внутренних органов лимфатической системы

Лимфатическая сеть хоть и менее обширна, чем кровеносная, но не менее значима для поддержания здоровья человека. К ней относятся разветвлённые сосуды и лимфатические узлы, по которым движется биологически значимая жидкость - лимфа, находящаяся в тканях и органах. Ещё одним отличием лимфатической сети от кровеносной является её незамкнутость - сосуды, несущие лимфу, не смыкаются в кольцо, оканчиваясь непосредственно в тканях, откуда всасывают лишнюю жидкость и впоследствии переносят к венозному руслу.


В лимфатических узлах происходит дополнительная фильтрация, позволяющая очистить лимфу от молекул вирусов, бактерий и токсинов. По их реакции медики обычно и узнают, что в организме начался воспалительный процесс, - места локализации лимфоузлов становятся отёчными и болезненными, а сами узелки заметно увеличиваются в размерах.

Основная сфера деятельности лимфатической системы заключается в следующем:

  • транспорт липидов, всосавшихся с пищей, в кровяное русло;
  • поддержание сбалансированного объёма и состава биологических жидкостей организма;
  • эвакуация скопившихся излишков воды в тканях (например, при отёках);
  • защитная функция тканей лимфоузлов, в которой вырабатываются антитела;
  • фильтрация молекул вирусов, бактерий и токсинов.

Роль иммунитета в анатомии человека

На иммунной системе лежит ответственность за поддержание здоровья организма при любом внешнем воздействии, особенно вирусной или бактериальной природы. Анатомия тела продумана таким образом, чтобы болезнетворные микроорганизмы, попадая внутрь, максимально быстро встречались с органами иммунитета, которые, в свою очередь, должны не только распознать происхождение «незваного гостя», но и правильно отреагировать на его появление, подключив остальные резервы.


Классификация органов иммунитета включает центральную и периферическую группы. К первой относятся костный мозг и тимус. Костный мозг представлен губчатой тканью, которая способна синтезировать клетки крови, в том числе лейкоциты, отвечающие за уничтожение чужеродных микробов. А тимус, или вилочковая железа, является местом для размножения лимфатических клеток.

Периферические органы, отвечающие за иммунитет, более многочисленны. К ним относятся:

  • Лимфатические узлы - место фильтрации и распознавания патологических микроэлементов, проникших в организм.
  • Селезёнка - многофункциональный орган, в котором осуществляется депонирование элементов крови, её фильтрация и производство лимфатических клеток.
  • Участки лимфоидной ткани в органах - место, где «работают» антигены, вступая в реакцию с болезнетворными микроорганизмами и подавляя их.

Благодаря работоспособности иммунитета организм может справляться с вирусными, бактериальными и другими заболеваниями, не обращаясь за помощью к медикаментозной терапии. Крепкий иммунитет позволяет противостоять чужеродным микроорганизмам на начальном этапе, предотвращая тем самым возникновение болезни или как минимум обеспечивая её лёгкое течение.

Анатомия органов чувств

Органы, отвечающие за оценку и восприятие реалий внешней среды, относятся к органам чувств: зрения, осязания, обоняния, слуха и вкуса. Именно через них к нервным окончаниям поступает информация, которая молниеносно обрабатывается и позволяет правильно реагировать на обстановку. К примеру, осязание позволяет воспринять информацию, поступающую через рецепторное поле кожи: на ласковые поглаживания, лёгкий массаж кожа мгновенно реагирует едва ощутимым повышением температуры, которое обеспечивается благодаря притоку крови, тогда как при болезненных ощущениях (например, при термическом воздействии или повреждении тканей), ощущаемых на поверхности дермальных тканей, организм мгновенно реагирует сужением кровеносных сосудов и замедлением кровотока, который обеспечивает защиту от более глубоких повреждений.


Зрение, слух и другие органы чувств позволяют не только физиологически реагировать на изменения во внешней среде, но и испытывать различные эмоции. Например, видя прекрасную картину или слушая классическую музыку, нервная система посылает организму сигналы к расслаблению, умиротворению, благодушию; чужая боль, как правило, вызывает сострадание; а неприятные новости - грусть и озабоченность.

Мочеполовая система в анатомии тела человека

В некоторых научных источниках мочеполовую систему рассматривают как 2 составляющие: мочевыделительную и репродуктивную, однако, из-за тесной взаимосвязи и смежного расположения их всё же принято объединять. Строение и функции этих органов сильно разнятся в зависимости от половой принадлежности, поскольку на них возложен один из самых сложных и загадочных процессов взаимодействия полов - репродукция.

И у женщин, и у мужчин мочевыделительная группа представлена следующими органами:

  • Почки - парные органы, которые выводят из организма излишек воды и токсичные вещества, а также регулируют объём крови и других биологических жидкостей.
  • Мочевой пузырь - полость, состоящая из мышечных волокон, в которой накапливается моча до момента её выведения.
  • Уретра, или мочеиспускательный канал - путь, по которому моча эвакуируется из пузыря после его наполнения. У мужчин он составляет 22–24 см, а у женщин - всего 8.

Репродуктивная составляющая мочеполовой системы сильно разнится в зависимости от пола. Так, у мужчин она включает яички с придатками, семенные железы, простату, мошонку и пенис, которые в комплексе отвечают за формирование и эвакуацию семенной жидкости. Женская половая система устроена более сложно, поскольку именно на представительниц прекрасного пола ложится ответственность за вынашивание ребёнка. К ней относятся матка и маточные трубы, пара яичников с придатками, влагалище и наружные половые органы - клитор и 2 пары половых губ.


Анатомия органов эндокринной системы

Под эндокринными органами подразумевают комплекс различных желёз, которые синтезируют в организме специальные вещества - гормоны, отвечающие за рост, развитие и полноценное протекание многих биологических процессов. К эндокринной группе органов относятся:

  1. Гипофиз - небольшая «горошина» в головном мозге, которая вырабатывает около десятка разнообразных гормонов и регулирует рост и размножение организма, отвечает за поддержание метаболизма, артериального давления и мочеиспускания.
  2. Щитовидная железа, расположенная в области шеи, контролирует деятельность обменных процессов, отвечает за сбалансированный рост, интеллектуальное и физическое развитие личности.
  3. Паращитовидная железа - регулятор усвоения кальция и фосфора.
  4. Надпочечники вырабатывают адреналин и норадреналин, которые не только контролируют поведение в стрессовой ситуации, но и влияют на сердечные сокращения и состояние сосудов.
  5. Яичники и яички - исключительно половые железы, которые синтезируют гормоны, необходимые для нормальной половой функции.

Любое, даже самое минимальное, повреждение эндокринных желёз может стать причиной серьёзного гормонального дисбаланса, который, в свою очередь, приведёт к сбоям в работе организма в целом. Именно поэтому исследование крови на уровень гормонов является одним из базовых исследований в диагностике различных патологий, особенно связанных с репродуктивной функцией и всевозможными нарушениями развития.

Функция дыхания в анатомии человека

Система дыхания человека отвечает за насыщение организма молекулами кислорода, а также выведение отработанного углекислого газа и токсических соединений. По сути, это последовательно соединённые между собой трубки и полости, которые сначала заполняются вдыхаемым воздухом, а потом изгоняют изнутри углекислый газ.


Верхние дыхательные пути представлены носовой полостью, носоглоткой и гортанью. Там воздух согревается до комфортной температуры, позволяя предотвратить переохлаждение нижних отделов дыхательного комплекса. Кроме того, слизь носа увлажняет слишком сухие потоки и обволакивает плотные мельчайшие частички, которые могут травмировать чувствительную слизистую.

Нижние дыхательные пути начинаются гортанью, в которой не только осуществляется функция дыхания, но и формируется голос. При колебании голосовых связок гортани возникает звуковая волна, однако трансформируется в членораздельную речь она только в ротовой полости, с помощью языка, губ и мягкого нёба.

Далее воздушный поток проникает в трахею - трубку из двух десятков хрящевых полуколец, которая прилегает к пищеводу и впоследствии распадается на 2 отдельных бронха. Затем бронхи, впадающие в ткани лёгких, ветвятся на меньшие по размеру бронхиолы и т. д., вплоть до образования бронхиального дерева. Сама же лёгочная ткань, состоящая из альвеол, отвечает за газообмен - всасывание кислорода из бронхов и последующую отдачу углекислоты.

Послесловие

Организм человека представляет собой сложную и уникальную в своем роде структуру, которая способна самостоятельно регулировать свою работу, реагируя на малейшие изменения окружающей среды. Базовые знания анатомии человека обязательно пригодятся каждому, кто стремится сохранить свой организм, поскольку нормальная работа всех органов и систем является основой здоровья, долголетия и полноценной жизни. Понимая, как происходит тот или иной процесс, от чего он зависит и чем регулируется, вы сможете вовремя заподозрить, выявить и скорректировать возникшую проблему, не пуская её на самотёк!

Мышцы - одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой - на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы - продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические - задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные - способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные - способствуют наклонным и вращательным движениям головы;
  • средние - создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной - приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота - дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной - создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние - состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние - играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими - актиновые, и толстыми - миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума - это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические - способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические - при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические - процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги - нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания - непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения - хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.



Новое на сайте

>

Самое популярное