Домой Детская стоматология Доверительный интервал для математического ожидания нормального распределения при известной дисперсии. Доверительные интервалы для оценки математического ожидания

Доверительный интервал для математического ожидания нормального распределения при известной дисперсии. Доверительные интервалы для оценки математического ожидания

И др. Все они являются оценками своих теоретических аналогов, которые можно было бы получить, если бы в распоряжении была не выборка, а генеральная совокупность. Но увы, генеральная совокупность – это очень дорого и часто недоступно.

Понятие об интервальном оценивании

Любая выборочная оценка обладает некоторым разбросом, т.к. является случайной величиной, зависящей от значений в конкретной выборке. Стало быть, для более надежных статистических выводов следует знать не только точечную оценку, но и интервал, который с высокой вероятностью γ (гамма) накрывает оцениваемый показатель θ (тета).

Формально, это два таких значения (статистики) T 1 (X) и T 2 (X) , что T 1 < T 2 , для которых при заданном уровне вероятности γ выполняется условие:

Короче, с вероятностью γ или больше истинный показатель находится между точками T 1 (X) и T 2 (X) , которые называются нижней и верхней границей доверительного интервала .

Одним из условий построения доверительных интервалов является его максимальная узость, т.е. он должен быть насколько это возможно коротким. Желание вполне естественно, т.к. исследователь старается точнее локализовать нахождение искомого параметра.

Отсюда следует, что доверительный интервал должен накрывать максимальные вероятности распределения. а сама оценка быть в центре.

То бишь вероятность отклонения (истинного показателя от оценки) в большую сторону равна вероятности отклонения в меньшую сторону. Следует также отметить, что для несимметричных распределений интервал справа не равен интервалу слева.

По рисунку выше отчетливо видно, что чем больше доверительная вероятность, тем шире интервал – прямая зависимость.

Это была небольшая вводная часть в теорию интервального оценивания неизвестных параметров. Перейдем к нахождению доверительных границ для математического ожидания.

Доверительный интервал для математического ожидания

Если исходные данные распределены по , то и среднее будет нормальной величиной. Это следует из того правила, что линейная комбинация нормальных величин также имеет нормальное распределение. Следовательно, для расчета вероятностей мы могли бы использовать математический аппарат нормального закона распределения.

Однако для этого потребуется знать два параметра – матожидание и дисперсию, которые обычно не известны. Можно, конечно, вместо параметров использовать оценки (среднюю арифметическую и ), но тогда распределение средней будет не совсем нормальным, оно будет немного приплюснуто книзу. Этот факт ловко подметил гражданин Уильям Госсет из Ирландии, опубликовав свое открытие в мартовском выпуске журнала «Biometrica» за 1908 год. В целях конспирации Госсет подписался Стьюдентом. Так появилось t-распределение Стьюдента.

Однако нормальное распределение данных, использовавшееся К. Гауссом при анализе ошибок астрономических наблюдений, в земной жизни встречается крайне редко и установить это довольно сложно (для высокой точности необходимо порядка 2 тысяч наблюдений). Поэтому предположение о нормальности лучше всего отбросить и использовать методы, не зависящие от распределения исходных данных.

Возникает вопрос: каково же распределение средней арифметической, если оно рассчитано по данным неизвестного распределения? Ответ дает известная в теории вероятностей Центральная предельная теорема (ЦПТ). В математике существует несколько ее вариантов (на протяжении долгих лет формулировки уточнялись), но все они, грубо говоря, сводятся к утверждению, что сумма большого количества независимых случайных величин подчиняется нормальному закону распределения.

При расчете средней арифметической как раз используется сумма случайных величин. Отсюда получается, что среднее арифметическое имеет нормальное распределение, у которого матожидание – это матожидание исходных данных, а дисперсия – .

Умные люди умеют доказывать ЦПТ, но мы в этом убедимся с помощью эксперимента, проведенного в Excel. Смоделируем выборку из 50-ти равномерно распределенных случайных величин (с помощью функции Excel СЛУЧМЕЖДУ). Затем сделаем 1000 таких выборок и для каждой рассчитаем среднюю арифметическую. Посмотрим на их распределение.

Видно, что распределение средней близко к нормальному закону. Если объем выборок и их количество сделать еще больше, то сходство будет еще лучше.

Теперь, когда мы воочию убедились в справедливости ЦПТ, можно, используя , рассчитать доверительные интервалы для средней арифметической, которые с заданной вероятностью накрывают истинное среднее или математическое ожидание.

Для установления верхней и нижней границы требуется знать параметры нормального распределения. Как правило, их нет, поэтому используют оценки: среднюю арифметическую и выборочную дисперсию . Повторюсь, такой способ дает хорошее приближение только при больших выборках. Когда выборки малые, часто рекомендуют использовать распределение Стьюдента. Не верьте! Распределение Стьюдента для средней бывает только тогда, когда исходные данные имеют нормальное распределение, то есть почти никогда. Поэтому лучше сразу поставить минимальную планку по количеству необходимых данных и использовать асимптотически корректные методы. Говорят, достаточно 30 наблюдений. Берите 50 – не ошибетесь.

T 1,2 – нижняя и верхняя граница доверительного интервала

– выборочное среднее арифметическое

s 0 – среднее квадратичное отклонение по выборке (несмещенное)

n – размер выборки

γ – доверительная вероятность (обычно равна 0,9, 0,95 или 0,99)

c γ =Φ -1 ((1+γ)/2) – обратное значение функции стандартного нормального распределения. По-простому говоря, это количество стандартных ошибок от средней арифметической до нижней или верхней границы (указанным трем вероятностями соответствуют значения 1,64, 1,96 и 2,58).

Суть формулы в том, что берется среднее арифметическое и далее от нее откладывается некоторое количество (с γ ) стандартных ошибок (s 0 /√n ). Все известно, бери и считай.

До массового использования ПЭВМ для получения значений функции нормального распределения и обратной ей использовали . Их и сейчас используют, но эффективнее обратиться к готовым формулам Excel. Все элементы из формулы выше ( , и ) можно легко рассчитать в Excel. Но есть и готовая формула для расчета доверительного интервала – ДОВЕРИТ.НОРМ . Ее синтаксис следующий.

ДОВЕРИТ.НОРМ(альфа;стандартное_откл;размер)

альфа – уровень значимости или доверительный уровень, который в принятых выше обозначениях равен 1- γ, т.е. вероятность того, что математическое ожидание окажется за пределами доверительного интервала. При доверительной вероятности 0,95, альфа равно 0,05 и т.д.

стандартное_откл – среднее квадратичное отклонение выборочных данных. Стандартную ошибку рассчитывать не нужно, Excel сам разделит на корень из n.

размер – размер выборки (n).

Результат функции ДОВЕРИТ.НОРМ – это второе слагаемое из формулы расчета доверительного интервала, т.е. полуинтервал. Соответственно, нижняя и верхняя точка – это среднее ± полученное значение.

Таким образом, можно построить универсальный алгоритм расчета доверительных интервалов для средней арифметической, который не зависит от распределения исходных данных. Платой за универсальность является его асимптотичность, т.е. необходимость использования относительно больших выборок. Однако в век современных технологий собрать нужное количество данных обычно не представляет трудностей.

Проверка статистических гипотез с помощью доверительного интервала

{module 111}

Одной из главных задач, решаемых в статистике, является . Ее суть вкратце такова. Выдвигается предположение, например, что матожидание генеральной совокупности равно какому-то значению. Затем строится распределение выборочных средних, которые могут наблюдаться при данном матожидании. Далее смотрят, в каком месте этого условного распределения находится реальная средняя. Если она выходит за допустимые пределы, то появление такого среднего очень маловероятно, а при однократном повторении эксперимента почти невозможно, что противоречит выдвинутой гипотезе, которая успешно отклоняется. Если же среднее не выходит за критический уровень, то гипотеза не отклоняется (но и не доказывается!).

Так вот с помощью доверительных интервалов, в нашем случае для матожидания, также можно проверять некоторые гипотезы. Это очень просто сделать. Допустим, средняя арифметическая по некоторой выборке равна 100. Проверяется гипотеза о том, что матожидание равно, допустим, 90. То есть, если поставить вопрос примитивно, то он звучит так: может ли такое быть, чтобы при истинном значении средней равной 90, наблюдаемая средняя оказалась равна 100?

Для ответа на этот вопрос дополнительно потребуется информация о среднем квадратичном отклонении и размере выборки. Допустим среднеквадратичное отклонение равно 30, а количество наблюдений 64 (чтобы легко извлечь корень). Тогда стандартная ошибка средней равна 30/8 или 3,75. Для расчета 95% доверительного интервала потребуется отложить в обе стороны от средней по две стандартные ошибки (точнее, по 1,96). Доверительный интервал получится примерно 100±7,5 или от 92,5 до 107,5.

Далее рассуждения следующие. Если проверяемое значение попадает в доверительный интервал, то оно не противоречит гипотезе, т.к. укладывается в пределы случайных колебаний (с вероятностью 95%). Если проверяемая точка выходит за пределы доверительного интервала, то вероятность такого события очень маленькая, во всяком случае ниже допустимого уровня. Значит, гипотезу отклоняют, как противоречащую наблюдаемым данным. В нашем случае гипотеза о матожидании находится за пределами доверительного интервала (проверяемое значение 90 не входит в интервал 100±7,5), поэтому ее следует отклонить. Отвечая на примитивный вопрос выше, следует сказать: нет не может, во всяком случае такое случается крайне редко. Часто при этом указывают конкретную вероятность ошибочного отклонения гипотезы (p-level), а не заданный уровень, по которому строился доверительный интервал, но об этом в другой раз.

Как видим, построить доверительный интервал для среднего (или математического ожидания) несложно. Главное, уловить суть, а дальше дело пойдет. На практике в большинстве случаев используются 95% доверительный интервал, который имеет в ширину примерно две стандартные ошибки по обе стороны от средней.

На этом пока все. Всех благ!

Пусть случайная величина (можно говорить о генеральной совокупности) распределена по нормальному закону, для которого известна дисперсия D = 2 (> 0). Из генеральной совокупности (на множестве объектов которой определена случайная величина) делается выборка объема n. Выборка x 1 , x 2 ,..., x n рассматривается как совокупность n независимых случайных величин, распределенных так же как (подход, которому дано объяснение выше по тексту).

Ранее также обсуждались и доказаны следующие равенства:

Mx 1 = Mx 2 = ... = Mx n = M;

Dx 1 = Dx 2 = ... = Dx n = D;

Достаточно просто доказать (мы доказательство опускаем), что случайная величина в данном случае также распределена по нормальному закону.

Обозначим неизвестную величину M через a и подберем по заданной надежности число d > 0 так, чтобы выполнялось условие:

P(- a < d) = (1)

Так как случайная величина распределена по нормальному закону с математическим ожиданием M = M = a и дисперсией D = D /n = 2 /n, получаем:

P(- a < d) =P(a - d < < a + d) =

Осталось подобрать d таким, чтобы выполнялось равенство

Для любого можно по таблице найти такое число t, что(t)= / 2. Это число t иногда называют квантилем .

Теперь из равенства

определим значение d:

Окончательный результат получим, представив формулу (1) в виде:

Смысл последней формулы состоит в следующем: с надежностью доверительный интервал

покрывает неизвестный параметр a = M генеральной совокупности. Можно сказать иначе: точечная оценка определяет значение параметра M с точностью d= t / и надежностью.

Задача. Пусть имеется генеральная совокупность с некоторой характеристикой, распределенной по нормальному закону с дисперсией, равной 6,25. Произведена выборка объема n = 27 и получено средневыборочное значение характеристики = 12. Найти доверительный интервал, покрывающий неизвестное математическое ожидание исследуемой характеристики генеральной совокупности с надежностью =0,99.

Решение. Сначала по таблице для функции Лапласа найдем значение t из равенства (t) = / 2 = 0,495. По полученному значению t = 2,58 определим точность оценки (или половину длины доверительного интервала) d: d = 2,52,58 / 1,24. Отсюда получаем искомый доверительный интервал: (10,76; 13,24).

статистический гипотеза генеральный вариационный

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Пусть - случайная величина, распределенная по нормальному закону с неизвестным математическим ожиданием M, которое обозначим буквой a . Произведем выборку объема n. Определим среднюю выборочную и исправленную выборочную дисперсию s 2 по известным формулам.

Случайная величина

распределена по закону Стьюдента с n - 1 степенями свободы.

Задача заключается в том, чтобы по заданной надежности и по числу степеней свободы n - 1 найти такое число t , чтобы выполнялось равенство

или эквивалентное равенство

Здесь в скобках написано условие того, что значение неизвестного параметра a принадлежит некоторому промежутку, который и является доверительным интервалом. Его границы зависят от надежности, а также от параметров выборки и s.

Чтобы определить значение t по величине, равенство (2) преобразуем к виду:

Теперь по таблице для случайной величины t, распределенной по закону Стьюдента, по вероятности 1 - и числу степеней свободы n - 1 находим t. Формула (3) дает ответ поставленной задачи.

Задача. На контрольных испытаниях 20-ти электроламп средняя продолжительность их работы оказалась равной 2000 часов при среднем квадратическом отклонении (рассчитанном как корень квадратный из исправленной выборочной дисперсии), равном 11-ти часам. Известно, что продолжительность работы лампы является нормально распределенной случайной величиной. Определить с надежностью 0,95 доверительный интервал для математического ожидания этой случайной величины.

Решение. Величина 1 - в данном случае равна 0,05. По таблице распределения Стьюдента, при числе степеней свободы, равном 19, находим: t = 2,093. Вычислим теперь точность оценки: 2,093121/ = 56,6. Отсюда получаем искомый доверительный интервал: (1943,4; 2056,6).

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения X N(m ; ). Это основное предположение математической статистики основано на центральной предельной теореме. Пусть известно генеральное среднее квадратическое отклонение , но неизвестно математическое ожидание теоретического распределения m (среднее значение ).

В таком случае среднее выборочное , полученное в ходе эксперимента (п.3.4.2), также будет являться случайной величинойm ;
). Тогда «нормализованное» отклонение
N(0;1) – является стандартной нормальной случайной величиной.

Задача состоит в поиске интервальной оценки для m . Построим двусторонний доверительный интервал для m так, чтобы истинное математическое ожидание принадлежало ему с заданной вероятностью (надежностью) .

Установить такой интервал для величины
– это значит найти максимальное значение этой величины
и минимальное
, которые являются границам критической области:
.

Т.к. такая вероятность равна
, то корень этого уравнения
можно найти с помощью таблиц функции Лапласа (Таблица 3, приложение 1).

Тогда с вероятностью можно утверждать, что случайная величина
, то есть искомое генеральное среднее принадлежит интервалу
. (3.13)

Величину
(3.14)

называют точностью оценки.

Число
квантиль нормального распределения – можно найти как аргумент функции Лапласа (Таблица 3, приложение 1), учитывая соотношение 2Ф(u )= , т.е. Ф(u )=
.

Обратно, по заданному значению отклонения можно найти, с какой вероятностью, неизвестное генеральное среднее принадлежит интервалу
. Для этого нужно вычислить

. (3.15)

Пусть из генеральной совокупности извлечена случайная выборка методом повторного отбора. Из уравнения
можно найти минимальный объем повторной выборки n , необходимый для того, чтобы доверительный интервал с заданной надежностью не превышал наперед заданного значения. Оценку требуемого объема выборки производят по формуле:

. (3.16)

Исследуем точность оценки
:

1) При возрастании объема выборки n величина уменьшается , и значит, точность оценки увеличивается .

2) С увеличением надежности оценки увеличивается значение аргументаu (т.к. Ф (u ) монотонно возрастает) и значит увеличивается . В таком случае увеличение надежности уменьшает точность ее оценки .

Оценку
(3.17)

называют классической (где t - некий параметр, зависящий от и n ), т.к. она характеризует наиболее часто встречающиеся законы распределения.

3.5.3 Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном среднем квадратическом отклонении 

Пусть известно, что генеральная совокупность подчинена закону нормального распределения X N(m ;), где величина среднего квадратического отклонения неизвестна.

Для построения доверительного интервала оценки генерального среднего в этом случае используется статистика
, имеющая распределение Стъюдента с k = n –1 степенями свободы. Это следует из того, что N(0;1) (см. п.3.5.2), а
(см. п.3.5.3) и из определения распределения Стъюдента (ч.1.п.2.11.2).

Найдем точность классической оценки распределения Стъюдента: т.е. найдем t из формулы (3.17). Пусть вероятность выполнения неравенства
задана надежностью :

. (3.18)

Поскольку T St(n -1), очевидно, что t зависит от и n , поэтому обычно пишут
.

(3.19)

где
– функция распределения Стъюдента сn -1 степенями свободы.

Решая это уравнение относительно m , получим интервал
который с надежностью  покрывает неизвестный параметр m .

Величина t , n -1 , служащая для определения доверительного интервала случайной величины T (n -1), распределенной по Стъюденту с n -1 степенями свободы, называется коэффициентом Стъюдента . Его следует находить по заданным значениям n и  из таблиц «Критические точки распределения Стьюдента». (Таблица 6, приложение 1), которые и представляют собой решения уравнения (3.19).

В итоге получаем следующее выражение точности  доверительного интервала для оценки математического ожидания (генерального среднего), если неизвестна дисперсия:

(3.20)

Т.о., существует общая формула построения доверительных интервалов для математического ожидания генеральной совокупности:

где точность доверительного интервала в зависимости от известной или неизвестной дисперсии находится по формулам соответственно 3.16. и 3.20.

Задача 10. Проведены некоторые испытания, результаты которых занесены в таблицу:

x i

Известно, что они подчиняются закону нормального распределения с
. Найти оценкуm * для математического ожидания m , построить для него 90% доверительный интервал.

Решение:

Итак, m (2.53;5.47).

Задача 11. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределяются по нормальному закону, со средним квадратическим отклонением =15м. Сколько надо сделать независимых измерений, чтобы определить глубину с ошибками не более 5м при доверительной вероятности 90%?

Решение:

По условию задачи имеем X N(m ; ), где =15м, =5м, =0.9. Найдем объем n .

1) С заданной надежностью = 0.9 найдем по таблицам 3 (Приложение 1) аргумент функции Лапласа u = 1.65.

2) Зная заданную точность оценки =u =5, найдем
. Имеем

. Поэтому число испытаний n 25.

Задача 12. Выборка температуры t за первые 6 дней января представлена в таблице:

Найти доверительный интервал для математического ожидания m генеральной совокупности с доверительной вероятностью
и оценить генеральное стандартное отклонение s .

Решение:


и
.

2) Несмещённую оценку найдем по формуле
:

=-175

=234.84

;
;

=-192

=116


.

3) Поскольку генеральная дисперсия неизвестна, но известна ее оценка, то для оценки математического ожидания m используем распределение Стъюдента (Таблица 6, приложение 1) и формулу (3.20).

Т.к. n 1 =n 2 =6, то ,
, s 1 =6.85 имеем:
, отсюда -29.2-4.1<m 1 < -29.2+4.1.

Поэтому -33.3<m 1 <-25.1.

Аналогично имеем,
, s 2 = 4.8, , поэтому

–34.9< m 2 < -29.1. Тогда доверительные интервалы примут вид: m 1 (-33.3;-25.1) и m 2 (-34.9;-29.1).

В прикладных науках, например, в строительных дисциплинах, для оценки точности объектов используются таблицы доверительных интервалов, которые приведены в соответствующей справочной литературе.

Пусть CB X образуют генеральную совокупность и в — неизвестный параметр CB X. Если статистическая оценка в * является состоятельной, то чем больше объем выборки, тем точнее получаем значение в. Однако на практике мы имеем выборки не очень большого объема, поэтому не можем гарантировать большую точность.

Пусть в* — статистическая оценка для в. Величина |в* - в| называется точностью оценки. Ясно, что точность является CB, т. к. в* — случайная величина. Зададим малое положительное число 8 и потребуем, чтобы точность оценки |в* - в| была меньше 8, т. е. | в* - в | < 8.

Надежностью g или доверительной вероятностью оценки в по в * называется вероятность g, с которой осуществляется неравенство |в * - в| < 8, т. е.

Обычно надежность g задают наперед, причем, за g берут число, близкое к 1 (0,9; 0,95; 0,99; ...).

Так как неравенство |в * - в| < S равносильно двойному неравенству в* - S < в < в* + 8, то получаем:

Интервал (в * - 8, в* + 5) называется доверительным интервалом, т. е. доверительный интервал покрывает неизвестный параметр в с вероятностью у. Заметим, что концы доверительного интервала являются случайными и изменяются от выборки к выборке, поэтому точнее говорить, что интервал (в * - 8, в * + 8) покрывает неизвестный параметр в, а не в принадлежит этому интервалу.

Пусть генеральная совокупность задана случайной величиной X, распределенной по нормальному закону, причем, среднее квадратическое отклонение а известно. Неизвестным является математическое ожидание а = М (X). Требуется найти доверительный интервал для а при заданной надежности у.

Выборочная средняя

является статистической оценкой для хг = а.

Теорема. Случайная величина хВ имеет нормальное распределение, если X имеет нормальное распределение, и М (ХВ) = а,

А (XВ) = а, где а = у/Б (X), а = М (X). л/и

Доверительный интервал для а имеет вид:

Находим 8.

Пользуясь соотношением

где Ф(г) — функция Лапласа, имеем:

Р { | XВ - а | <8} = 2Ф

таблице значений функции Лапласа находим значение t.

Обозначив

T, получим F(t) = g Так как g задана, то по

Из равенстваНаходим— точность оценки.

Значит, доверительный интервал для а имеет вид:

Если задана выборка из генеральной совокупности X

нГ к" X2 Xm
n. n1 n2 nm

n = U1 + ... + nm, то доверительный интервал будет:

Пример 6.35. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю Xb = 10,43, объем выборки n = 100 и среднее квадратическое отклонение s = 5.

Воспользуемся формулой

Пусть случайая величина Х генеральной совокупности распределена нормально, учитывая, что дисперсия и среднее квадратическое отклонение s этого распределения известны. Требуется оценить неизвестное математическое ожидание по выборочной средней. В данном случае задача сводится к нахождению доверительного интервала для математического ожидания с надёжностью b. Если задаться значением доверительной вероятности (надёжности) b, то можно найти вероятность попадания в интервал для неизвестного математического ожидания, используя формулу (6.9а):

где Ф(t ) – функция Лапласа (5.17а).

В результате можно сформулировать алгоритм отыскания границ доверительного интервала для математического ожидания, если известна дисперсия D = s 2:

  1. Задать значение надёжности – b .
  2. Из (6.14) выразить Ф(t) = 0,5× b. Выбрать значение t из таблицы для функции Лапласа по значению Ф(t) (см. Приложение 1).
  3. Вычислить отклонение e по формуле (6.10).
  4. Записать доверительный интервал по формуле (6.12) такой, что с вероятностью b выполняется неравенство:

.

Пример 5 .

Случайная величина Х имеет нормальное распределение. Найти доверительные интервалы для оценки с надежностью b = 0,96 неизвестного математического ожидания а, если даны:

1) генеральное среднее квадратическое отклонение s = 5;

2) выборочная средняя ;

3) объём выборки n = 49.

В формуле (6.15) интервальной оценки математического ожидания а с надёжностью b все величины, кроме t, известны. Значение t можно найти, используя (6.14): b = 2Ф(t) = 0,96. Ф(t) = 0,48.

По таблице Приложения 1 для функции Лапласа Ф(t) = 0,48 находят соответствующее значение t = 2,06. Следовательно, . Подставив в формулу (6.12) вычисленное значение e, можно получить доверительный интервал: 30-1,47 < a < 30+1,47.

Искомый доверительный интервал для оценки с надёжностью b = 0,96 неизвестного математического ожидания равен: 28,53 < a < 31,47.



Новое на сайте

>

Самое популярное