Домой Десны Астрономические приборы и наблюдения с ними. Оптические телескопы – типы и устройство

Астрономические приборы и наблюдения с ними. Оптические телескопы – типы и устройство

Невероятно интересно наблюдать за красотой небесных тел, особенно ночью, когда взору открыты звезды, планеты и разные галактики. Если вы хотите приобщиться к тем, кто любит астрономию и увидеть все светила, то вам нужно приобрести телескоп. С чего начать? Как выбрать телескоп для начинающих? Для этого вам нужно не так уж и много – подходящий оптический прибор, карта звездного неба и сумасшедший интерес к этой загадочной науке. Сегодня вы узнаете, что такое телескоп, рассмотрите его разновидности, на какие параметры следует обратить внимание при выборе прибора, который откроет для вас мир ярких звезд и созвездий.

Основные вопросы

Как выбрать телескоп? Перед покупкой телескопа постарайтесь понять, что вы хотите получить от данного приобретения. Рекомендуем составить список вопросов и постараться на них ответить, прежде чем отправляться в магазин. Нужно дать ответ на следующие вопросы:

  • Какие объекты вы хотите увидеть на небе?
  • Где вы планируете использовать прибор – дома или на улице?
  • Хотите ли вы в дальнейшем заниматься астрофотографией?
  • Сколько вы готовы потратить на свое увлечение?
  • За какими именно небесными светилами вам хотелось бы наблюдать – ближайшие планеты Солнечной системы или самые далекие галактики и туманности?

Очень важно дать правильный ответ на эти вопросы. Прибор стоит немалых денег, и вам нужно правильно определиться с конкретной моделью, чтобы купить такой телескоп, который полностью отвечает вашему опыту и личным предпочтениям.

Принцип действия и устройство телескопа

Такой оптический прибор является довольно сложным устройством, благодаря которому можно увидеть даже самые отдаленные предметы (земные или астрономические) в многократном увеличительном стекле. Его конструкция состоит из трубы, где на одном конце (ближе к небу) встроена светособирающая линза или вогнутое зеркало – объектив. На другом — находится так называемый окуляр, через который мы и просматриваем отдаленное изображение. О том, какой телескоп лучше, мы поговорим немного позже.

Конструкция телескопа оснащена такой дополнительной техникой:

  • Поисковик для обнаружения заданных астрономических объектов.
  • Светофильтры, которые блокируют сильное сияние небесных светил.
  • Корректирующие пластины или диагональные зеркала, способные поворачивать видимую картинку, которую линза передает “вверх ногами”.

Телескопы профессионального использования, которые оснащены возможностями астрофотографирования и видеосъемкой, могут быть укомплектованы следующей аппаратурой:

  • Система поиска GPS.
  • Сложное электронное оборудование.
  • Электродвигатель.

Разновидности телескопов

Сейчас мы ознакомим вас с основными видами оптических приборов, которые различны между собой по типу конструкции, наличию составляющих и дополнительных элементов.

Рефракторы (линзовые)

Данный вид телескопа легко узнать по довольно простой конструкции, которая напоминает подзорную трубу. На одной оси находятся объектив и окуляр, а увеличительный объект передается по прямому спектру – так же, как и в самых первых телескопах, произведенных много лет назад.

Такие преломляющие оптические аппараты могут собрать отраженный свет небесных объектов с помощью 2-5 увеличительно-выпуклых линз, расположенных в двух концах длинной трубы конструкции.

Как выбрать телескоп для любителя астрологии?

Линзовый аппарат отлично подойдет новичкам для наблюдений за жизнью небесных объектов. Линзовые телескопы позволяют хорошо рассмотреть как наземные, так и небесные объекты, выходящие за пределы нашей Солнечной системы. При использовании рефракторного телескопа можно заметить то, что при пойманном объективом свете может теряться четкость изображения, а при многократном увеличении можно наблюдать немного размытые объекты.

Важно! Пользоваться таким прибором лучше на открытой местности, в идеале – за городом, где отсутствует засветка неба посторонними лучами.

Достоинства:

  • Просты в использовании и не нуждаются в дополнительном дорогом обслуживании.
  • Герметичная конструкция прибора оберегает аппарат от попадания пыли и влаги.
  • Стойкие к перепадам температуры
  • Могут выдавать четкую и яркую картинку ближайших астрономических объектов.
  • Имеют долгий срок эксплуатации.
Недостатки:
  • Очень габаритные и тяжелые (вес некоторых телескопов достигает 20 кг).
  • Максимальный диаметр увеличительной линзы – 150 мм.
  • Не подходит для городских наблюдений.

В зависимости от типа оптических линз, телескопы делят на следующие виды:

  • Ахроматические – оснащены малым и средним оптическим увеличением, но показывают плоскую картинку.
  • Апохроматические – выдают выпуклое изображение, но зато исключают дефекты нечеткого контура и появление вторичного светового спектра.

Рефлекторы (зеркальные)

Как выбрать телескоп для наблюдений? Работа такого телескопа заключается в улавливании и передаче светового луча с помощью двух вогнутых зеркал: первое — находится внутри трубы, второе – преломляет картинку под углом, направляя ее на боковую линзу.

В отличие от рефлекторного аппарата, таким телескопом можно изучать глубокую область космоса и получать более качественное изображение удаленных галактик. Так как зеркала стоят дешевле линз, то и цена будет соответствующей – низкой.

Важно! Начинающему пользователю будет непросто управлять сложными техническими настройками и коррективами такого телескопа. Именно поэтому рекомендуем потренироваться сначала на рефлекторе, а позже перейти на более высокий уровень профессионала.

Плюсы:

  • Простота конструкции телескопа.
  • Компактный размер и небольшой вес.
  • Хорошо улавливает приглушенный свет самых далеких космических объектов.
  • Большой диаметр увеличительной апертуры (от 250–400 мм), которая передают более контрастную и яркую картинку, без каких-либо дефектов.
  • Приемлемая цена по сравнению с дорогостоящими рефракторами

Минусы:

  • Требует особого опыта и времени на настройку оптической системы.
  • Внутрь конструкции могут попасть частички пыли и грязи.
  • Не любит перепадов температур.
  • Не подходит для просмотра наземных и ближайших объектов Солнечной системы.

Катадиоптрики (зеркально-линзовые)

Линзы и зеркала – составляющие элементы объектива катадиоптрических телескопов. Данный аппарат включает в себя все достоинства и максимально корректирует дефекты с помощью специальных пластин. С таким прибором можно не только получать самую четкую картинку ближних и дальних небесных светил, но делать качественные фотографии увиденного объекта.

Плюсы:

  • Небольшие размеры и транспортабельность.
  • Передают самое качественное изображение из всех существующих телескопов.
  • Оснащены апертурой до 400 мм.

Минусы:

  • Дорогостоящие.
  • Скопление воздуха внутри телескопической трубы.
  • Сложная конструкция и управление.

Параметры выбора телескопа

Пришло время рассмотреть основные характеристики современных оптических приборов, чтобы понять, как выбрать телескоп для начинающих и не только.

Апертура (диаметр объектива)

Является главным критерием выбора любого телескопа. От апертуры объектива зависит способность зеркала или линзы улавливать свет: чем выше эта характеристика, тем большее количество отраженных лучей попадет в объектив. Благодаря этому вы сможете увидеть качественное изображение и даже уловить слабую видимость самых дальних космических объектов.

При выборе апертуры, исходя из своих целей, ориентируйтесь на следующие цифры:

  • Чтобы разглядеть четкие детали картинки ближних планет или спутников, достаточно телескопа с диаметром до 150 мм. Для городских условий можно уменьшить этот показатель до 70–90 мм.
  • Рассмотреть более отдаленные небесные объекты сможет аппарат с апертурой более 200 мм.
  • Если вы хотите видеть ближние и дальние небесные светила за городом, то можете попробовать самую большую величину оптических линз – до 400 мм.

Фокусное расстояние

Расстояние от небесных тел до точки в окуляре называют фокусным расстоянием. Именно здесь все световые лучи образуют пучок единого свечения. Этот показатель диктует степень увеличения и четкость видимой картинки – чем он выше, тем лучше мы увидим интересующее небесное светило. Чем выше фокус, тем длиннее сам телескоп, поэтому такие габариты могут повлиять на компактности его хранения и транспортировки.

Важно! Короткофокусный прибор можно держать дома, а вот длиннофокусный – в более просторном помещении, например, во дворе дома или на даче.

Кратность увеличения

Данный показатель легко определить, поделив фокусное расстояние на характеристику вашего окуляра. Так, если диаметр телескопа 800 мм, а по окуляру оно равно 16, то вы сможете получить 50-кратное оптическое увеличение.

Важно! Если вы установите слабый или более мощный окуляр, то сможете самостоятельно корректировать увеличение различных объектов.

Сегодня производители предлагают различную оптику – от самой низкой (4–40мм) до самой высокой, которая может удвоить фокус оптического прибора.

Тип монтировки

Это не что иное, как подставка для телескопа. Ее прямое предназначение – удобство в использовании телескопа.

Любительский и полупрофессиональный комплект состоит из 3 основных видов таких подвижных опор:

  • Азимутальная – довольно простая подставка, смещающая аппарат по горизонтали и вертикали. Такой опорой комплектуют рефракторы и катадиоптрики. Для астрофотографирования азимутальная монтировка не подходит, так как не способна поймать четкое изображение объекта.
  • Экваториальная – имеет внушительный вес и габариты, но зато отлично находит нужное светило по заданным координатам. Данный вид монтировки подходит для рефлекторов, которые улавливают самые отдаленные галактики. Экваториальная опора очень популярна среди любителей астрофотографии.
  • Система Домсона – нечто среднее между обычной дешевой азимутальной подставкой и крепкой экваториальной конструкцией. Очень часто ее добавляют в комплектацию с мощными рефлекторами.

  • Не стоит переплачивать за габариты телескопа. Он должен быть таким, чтобы вы смогли самостоятельно его переносить и транспортировать. Самый лучший телескоп для дома должен быть максимально компактен и удобен в использовании.
  • Если вы будете перевозить аппарат в машине, то нужно убедиться в том, что размеры трубы разрешают поместить его в салоне или в багажнике. В ином случае — вам придется ремонтировать не только телескоп, но и свой грузовик.
  • Заранее выберите место для просмотра небесных объектов. Лучшим вариантом будет место, которое находится за пределами города. Если у вас нет транспорта, то остановитесь на ближайшей смотровой площадке с отсутствием ближайших жилых массивов и других зданий.
  • Если вы — новичок, то не тратьте сразу весь накопленный бюджет. Приобретение окуляров, мощных фильтров и другого оборудования – очень дорогой процесс.
  • Старайтесь наблюдать за небесными светилами как можно чаще. Так, если каждый день пользоваться телескопом и рассматривать одни и те же объекты, то со временем можно увидеть их новые изменения и перемещения.
  • Если вашей целью является изучение самых дальних галактик и туманностей, то купите рефлектор с диаметром от 250 мм, дополненный азимутальной подставкой.
  • Любителям астрофотографирования не обойтись без катадиоптрического оптического прибора с мощной апертурой (400 мм) и самой длинной фокусировкой от 1000 мм. Можно добавить к комплекту экваториальную монтировку с автоматическим приводом.
  • Своему ребенку можно подарить бюджетный и простой в использовании телескоп-рефрактор из детской серии, оснащенный апертурой 70 мм на азимутальной опоре. А дополнительный адаптер, поможет сделать эффектные фото Луны и наземных объектов.

Видеоматериал

Мы очень надеемся, что прочитав нашу статью, вы стали знатоком в области телескопии, а выбрать хороший телескоп для дома не будет для вас проблемой. Наблюдать за Луной, звездами, планетами, галактиками, интересными туманностями крайне захватывающе и необычайно интересно! Желаем вам новых открытий и долгой службы вашего телескопа!

В настоящее время на полках магазинов можно обнаружить самые разные телескопы. Современные производители заботятся о своих клиентах и стараются совершенствовать каждую модель, постепенно устраняя недостатки каждой и них.

В целом подобные устройства все же устроены по одной похожей схеме. Что представляет собой общее устройство телескопа? Об этом далее.

Труба

Главная часть инструмента – это труба. В ней помещается объектив, в который далее попадают лучи света. Объективы встречаются сразу разных видов. Это рефлекторы, катадиоптрические объективы и рефракторы. У каждого вида есть свои плюсы и минусы, которые изучают пользователи перед покупкой и уже, опираясь на них, делают выбор.

Основные составляющие каждого телескопа: труба и окуляр

Помимо трубы в инструменте есть еще и искатель. Можно сказать, что это миниатюрная подзорная труба, которая соединяется с основной трубой. При этом наблюдается увеличение в 6-10 раз. Эта деталь устройства необходимо для предварительного наведения на объект наблюдения.

Окуляр

Еще одна важная часть любого телескопа – это окуляр. Именно через эту сменную деталь инструмента пользователь и ведет наблюдение. Чем короче данная часть, тем больше может быть увеличение, но при этом меньше угол зрения. Именно по этой причине лучше всего приобретать вместе с устройством сразу несколько разных окуляров. Например, с постоянным и переменным фокусом.

Монтировка, светофильтры и прочие детали

Монтировка также бывает нескольких типов. Как правило, телескоп укрепляется на треноге, которая имеет две поворотные оси. А есть еще и дополнительные «навески» на телескоп, которые стоит упомянуть. В первую очередь это светофильтры. Они необходимы астрономам для самых разных целей. Но для новичков приобретать их необязательно.

Правда, если пользователь планирует любоваться луной, то понадобится специальный лунный фильтр, который защитит глаза от слишком яркой картинки. Есть также особые фильтры, которые способны устранять мешающий свет городских фонарей, но стоят они довольно дорого. Чтобы рассматривать предметы в правильном положении, пригодятся также диагональные зеркала, которые, в зависимости от типа, способны отклонять лучи на 45 или 90 градусов.

Любой оптический телескоп состоит из трубы, треноги или фундамента, на который устанавливается труба, монтировки с осями наведения на объект и, конечно же, непосредственно оптики – окуляра и объектива. В зависимости от оптической схемы все телескопы можно разделить на три больших группы:

  • Зеркальные телескопы (или рефлекторы), в которых в качестве светособирающих элементов используются зеркала,
  • Линзовые телескопы (или рефракторы), в которых в качестве светособирающих элементов используются линзы
  • Зеркально-линзовые телескопы (катадиоптрические), в конструкцию которых входит как зеркало, так и линза (мениск), которая используется для компенсации аберраций .

Труба телескопа. У рефракторов труба герметично закрыта, что защищает линзы от попадания на них пыли и влаги. Открытая труба рефлектора во время наблюдения наоборот приводит к появлению в системе пыли, а также к ухудшению изображения из-за воздушных потоков. Трубы телескопов также различаются по своей длине. Рефракторы обычно пугают своими внушительными габаритами, в то время как рефлекторы по сравнению с ними компакты и более удобны в транспортировке. Зеркально-линзовые телескопы также располагают короткой трубой, однако весят они значительно больше, чем рефлекторы.

Монтировка телескопа. Монтировкой называют опору телескопа, установленную обычно на треногу. Монтировка состоит из двух осей для наводки, расположенных взаимно перпендикулярно, приводов и системы отсчета углов поворота.

Выделяют монтировки двух типов: экваториальная и альт-азимутальная. Экваториальная монтировка предполагает перпендикулярное земной оси вращение одной из плоскостей телескопа, благодаря чему при наблюдении легко компенсируется суточное вращение Земли. По сравнению с аль-азимутальной, данная монтировка достаточно массивнее и дороже в цене. Альт-азимутальная монтировка имеет вертикальную и горизонтальную оси вращения, благодаря чему телескоп поворачивается как по высоте, так и по азимуту. При такой монтировке гораздо сложнее компенсируется вращение земного шара, однако, она гораздо проще, компактнее и дешевле.

Основные характеристики оптических телескопов. Основными характеристиками любого оптического телескопа являются: диаметр объектива (апертура) ифокусное расстояние объектива.

Апертура определяется диаметром линзы (в рефракторе) или главного зеркала (в рефлекторе) и исчисляется в дюймах или миллиметрах. Другими словами апертура будет равна диаметру светового пучка, который телескоп способен принять. От диаметра объектива зависит разрешающая способность телескопа, то есть значение минимального углового расстояния между объектами, различимыми в телескоп.

Фокусное расстояние объектива телескопа – это расстояние, на котором зеркало или линза объектива строит изображение бесконечно удаленного объекта. От фокусного расстояния зависит светосила телескопа (отношение фокусного расстояния к диаметру объектива), а также оптическое увеличение (отношение фокусного расстояния объектива и окуляра).

http://www.astrotime.ru/Stroenie.html

> Виды телескопов

Все оптические телескопы группируются по виду светособирающего элемента на зеркальные, линзовые и комбинированные. Каждый тип телескопов имеет свои достоинства и недостатки, поэтому, выбирая оптику, нужно принимать во внимание следующие факторы: условия и цели наблюдения, требования к весу и мобильности, цене, уровню аберрации. Охарактеризуем наиболее популярные виды телескопов.

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название - рефракторы (от латинского refract - преломлять).

Был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.

Рефрактор Кеплера – более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился , который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

Название зеркальных телескопов – рефлекторов происходит от латинского слова reflectio – отражать. Данный прибор представляет собой телескоп с объективом, в роли которого выступает вогнутое зеркало. Его задача – собирать звездный свет в единой точке. Поместив в данной точке окуляр, можно увидеть изображение.

Один из первых рефлекторов (телескоп Грегори ) был придуман в 1663 году. Данный телескоп с параболическим зеркалом был полностью избавлен от хроматических и сферических аберраций. Свет, собранный зеркалом, отражался от небольшого овального зеркала, который был закреплен перед главным, в котором было небольшое отверстие для вывода светового пучка.

Ньютон был полностью разочарован в телескопах-рефракторах, поэтому одной из главных его разработок стал телескоп-рефлектор, созданный на основе металлического главного зеркала. Он одинаково отражал свет с различными длинами волн, а сферическая форма зеркала делала прибор более доступным даже для самостоятельного изготовления.

В 1672 году ученый-астроном Лорен Кассегрен предложил схему телескопа, который внешне напоминал знаменитый рефлектор Грегори. Но усовершенствованная модель имела несколько серьезных отличий, главное из которых – выпуклое гиперболическое вторичное зеркало, которое позволило сделать телескоп более компактным и свело к минимуму центральное экранирование. Впрочем, традиционный рефлектор Кассегрена оказался нетехнологичным для массового изготовления. Зеркала со сложными поверхностями и неисправленная аберрация комы – основные причины такой непопулярности. Однако модификации данного телескопа используются сегодня по всему миру. К примеру, телескоп Ричи-Кретьена и масса оптических приборов на основе системы Шмидта-Кассегрена и Максутова-Кассегрена .

Сегодня под названием «рефлектор» принято понимать ньютоновский телескоп. Основные его характеристики – это небольшая сферическая аберрация, отсутствие какого-либо хроматизма, а также неизопланатизм – проявление комы вблизи от оси, что связано с неравностью отдельных кольцевых зон апертуры. Из-за этого звезда в телескопе выглядит не как круг, а как некая проекция конуса. При этом, тупая округлая его часть повернута от центра в сторону, а острая – напротив, к центру. Для коррекции эффекта комы используются линзовые корректоры, которые следует фиксировать перед фотокамерой или окуляром.

«Ньютоны» зачастую выполняются на монтировке Добсона, которая отличается практичностью и компактными размерами. Это делает телескоп весьма портативным устройством, несмотря на размеры апертуры.

Достоинства рефлекторов:

    Доступная цена;

  • Мобильность и компактность;
  • Высокая эффективность при наблюдении тусклых объектов в глубоком космосе: туманностей, галактик, звездных скоплений;
  • Максимально яркие и четкие изображения с минимальным искажением.

    Хроматическая аберрация сведена к нулю.

Недостатки рефлекторов:

  • Растяжка вторичного зеркала, центральное экранирование. Отсюда – низкая контрастность изображения;
  • Термостабилизация большого стеклянного зеркала занимает много времени;
  • Открытая труба без защиты от тепла и пыли. Отсюда – низкое качество изображения;
  • Требуется регулярная коллимация и юстировка, которые могут утрачиваться во время использования или перевозки.

Для исправления аберрации и построения изображения катадиоптрические телескопы применяют как зеркала, так и линзы. Набольшим спросом сегодня пользуются два типа таких телескопов: на схеме Шмидт-Кассегрена и Максутов-Кассегрена.

Конструкция приборов Шмидта-Кассегрена (ШК) состоит из сферических главного и вторичного зеркал. При этом сферическая аберрация корректируется полноапертурной пластиной Шмидта, которая установлена на входе в трубу. Однако здесь сохраняются некоторые остаточные аберрации в виде комы и кривизны поля. Их исправление возможно при использовании линзовых корректоров, которые особенно актуальны в астрофотографии.

Основные достоинства приборов такого типа касаются минимального веса и короткой трубы при сохранении внушительного диаметра апертуры и фокусного расстояния. Вместе с тем, для данных моделей не характерны растяжки крепления вторичного зеркала, а особая конструкция трубы исключает проникновение внутрь воздуха и пыли.

Разработка системы Максутова-Кассегрена (МК) принадлежит советскому инженеру-оптику Д. Максутову. Конструкция такого телескопа оснащена сферическими зеркалами, а за коррекцию аберраций отвечает полноапертурный линзовый корректор, в роли которой выступает выпукло-вогнутая линза – мениск. Именно поэтому такое оптическое оборудование часто называют менисковым рефлектором.

К достоинствам МК относится возможность корректировки практически любой аберрации с помощью подбора основных параметров. Единственное исключение – это сферическая аберрация высшего порядка. Всё это делает схему популярной среди производителей и любителей астрономии.

Действительно, при прочих равных условиях система МК дает более качественные и четкие изображения, чем схема ШК. Однако у более габаритных телескопах МК продолжительнее период термостабилизации, поскольку толстый мениск теряет температуру гораздо медленнее. Кроме того, МК более чувствительны к жесткости крепления корректора, поэтому конструкция телескопа обладает большим весом. С этим связана высокая популярность систем МК с малыми и средними апертурами и систем ШК со средними и большими апертурами.

Кроме того, разработаны катадиоптрические системы Максутова-Ньютона и Шмидта-Ньютона, конструкция которых создана специально для исправления аберраций. Они сохранили ньютоновские габариты, но вес их существенно возрос. Особенно это касается менисковых корректоров.

Достоинства

  • Универсальность. Могут использоваться и для наземных, и для космических наблюдений;
  • Повышенный уровень исправления аберрации;
  • Защита от пыли и тепловых потоков;
  • Компактные размеры;
  • Доступная цена.

Недостатки катадиоптрических телескопов:

  • Долгий период термостабилизации, что особенно актуально для телескопов с менисковым корректором;
  • Сложность конструкции, которая вызывает трудности при установке и самостоятельной юстировке.

ГОУ Центр образования №548 «Царицыно»

Степанова Ольга Владимировна

Реферат по астрономии

Тема реферата: «Принцип работы и назначение телескопа»

Учитель: Закурдаева С.Ю

1. Введение

2. История телескопа

3. Виды телескопов. Основные назначения и принцип работы телескопа

4. Рефракторные телескопы

5. Рефлекторные телескопы

6. Зеркально-линзовые телескопы (катадиоптрические)

7. Радиотелескопы

8. Космический телескоп «Хаббл»

9. Заключение

10. Список использованной литературы

1. Введение

Звёздное небо очень красивое, оно привлекает к себе большой интерес и внимание. С давних пор люди пытались познать, что есть вне планеты Земля. Желание познать и изучить двигало людей к поиску возможностей изучения космоса, поэтому был изобретён телескоп. Телескоп – одно из главных приборов, который помогал и помогает изучать космос, звёзды, планеты. Я считаю, что важно знать об этом приборе, потому что каждый из нас хоть раз смотрел или же обязательно когда-нибудь посмотрит в телескоп. И обязательно откроет для себя что-нибудь неописуемо красивое и новое.

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI – III тысячелетия до н.э.). Астрономия изучает движение, строение, происхождение и развитие небесных тел и их систем.

Человек начал изучать Вселенную с того, что видел в небе. И на протяжении многих веков астрономия оставалась чисто оптической наукой.

Человеческий глаз – весьма совершенный оптический прибор, созданный природой. Он способен улавливать даже отдельные кванты света. С помощью зрения человек воспринимает более 80% информации о внешнем мире. Академик С.И.Вавилов пришёл к выводу, что глаз человека способен улавливать ничтожные порции света – всего около десятка фотонов. С другой стороны, глаз может выдерживать воздействие мощных световых потоков, например, от Солнца, прожектора или электрической дуги. Кроме того, человеческий глаз представляет собой весьма совершенную широкоугольную оптическую систему с большим углом зрения. Тем не менее, у глаза с точки зрения требований астрономических наблюдений имеются и весьма существенные недостатки. Главный из них состоит в том, что он собирает слишком мало света. Поэтому, глядя на небо невооруженным глазом, мы видим далеко не всё. Мы различаем, например, всего немногим более двух тысяч звезд, в то время как их там миллиарды миллиардов.

Поэтому в астрономии произошла настоящая революция, когда на помощь глазу пришел телескоп. Телескоп – это основной прибор, который используется в астрономии для наблюдения небесных тел, приёма и анализа происходящего от них излучения. Так же при помощи телескопов делают исследования спектральных излучений, рентгеновские фотографии, фотографии небесных объектов в ультрофиалете и др. Слово «телескоп» происходит от двух греческих слов: tele – далеко и skopeo – смотрю.

2. История телескопа

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученных и мыслителей XIII века, он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими.

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика – Липерсчей, Меунус, Янсен. К концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе.

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем.Галилео. Галилей родился в 1564 году в итальянском городе Пиза. Как сын дворянина Галилей получил образование при монастыре и в 1595 году стал профессором математики в Падуанском университете, одном из ведущих европейских университетов того времени, расположенном на территории Венецианской республики. Руководство университета позволяло заниматься исследованиями, и его открытия о движении тел завоевали широкое признание. В 1609 году до него дошли сведения об изобретении оптического устройства, позволявшего наблюдать отдаленные небесные объекты. За короткое время Галилей изобрёл и соорудил несколько собственных телескопов. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он пользовался телескопами для изучения небесных тел, а количество наблюдаемых им звёзд в 10 раз превосходило количество звёзд, которое можно видеть невооружённым глазом. 7 января 1610 года Галилей впервые направил построенный им телескоп на небо. Он обнаружил, что поверхность Луны густо покрыта кратерами, и открыл 4 крупнейших спутника Юпитера. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. Она меняла свои фазы, что свидетельствовало об ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) ученый увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего сделал правильный вывод о вращении Солнца вокруг оси. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно новое коперническое мировоззрение, были очень не совершенны.

Телескоп Галилея

Рисунок 1. Телескоп Галилея

Линза А, обращенная к объекту наблюдения, называется Объективом, а линза В, к которой прикладывает свой глаз наблюдатель – Окуляр. Если линза толще посередине, чем на краях, она называется Собирающей или Положительной, в противном случае – Рассеивающей или Отрицательной. В телескопе Галилея объективом служила плоско - выпуклая линза, а окуляром – плоско – вогнутая.

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Попадающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение. На (рис. 1) показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости, т.е. в плоскости, проходящей через фокус F и перпендикулярной оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN. Главным недостатком галилеевского телескопа было очень малое поле зрения (так называют угловой поперечник кружка тела, видимого в телескоп). Из-за этого наводить телескоп на небесное светило и наблюдать его очень трудно. По той же причине галилеевские телескопы после смерти их создателя в астрономии не употреблялись.

Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения. В результате этого в XVII веке на свет появились телескопы с фокусным расстоянием почти 100 метров (телескоп А.Озу имел длину 98 метров). Телескоп при этом не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый, "воздушный" телескоп). Наблюдать с таким телескопом было очень неудобно и Озу не сделал ни одного открытия. Однако, Христиан Гюйгенс, наблюдая с 64-метровым "воздушным" телескопом открыл кольцо Сатурна и спутник Сатурна - Титан, а также заметил полосы на диске Юпитера. Другой астроном того времени, Жан Кассини с помощью воздушных телескопов открыл еще четыре спутника Сатурна (Япет, Рея, Диона, Тефия), щель в кольце Сатурна (щель Кассини), "моря" и полярные шапки на Марсе.

3. Виды телескопов. Основные назначения и принцип работы телескопа

Телескопы, как известно, бывают нескольких видов. Среди телескопов для визуального наблюдения(оптические) выделяют 3 типа:

1. Рефракторные

Используется система линз. Лучи света от небесных объектов собираются при помощи линзы и путём преломления попадает в окуляр телескопа и даёт увеличенное изображение космического объекта.

2. Рефлекторы

Основным компонентом такого телескопа является вогнутое зеркало. Оно используется для фокусирования отражённых лучей.

3. Зеркально– линзовые

В данном типе оптических телескопов используется система зеркал и линз.

Оптическими телескопами, как правило, пользуются астрономы - любители.

Учёные для своих наблюдений и анализов используют дополнительные виды телескопов. Радиотелескопы используют для приёма радиоизлучений. Например всем известная программа по поиску внеземного разума под названием HRMS, которая подразумевала одновременное прослушивание радиошумов неба на миллионах частот. Деятелями этой программы были NASA. Началась данная программа в 1992 году. Но сейчас она ни каких поисков уже не ведёт. В рамках этой программы были проведены наблюдения с помощью 64-метрового Радиотелескопа в Параксе (Австралия), в национальной радиоастрономической обсерватории в США и на 305 - метровом радиотелескопе в Аресибо, но они не дали результатов.

Телескоп имеет три основных назначения:

  1. Собирать излучения от небесных светил на приемное устройство (глаз, фотографическую пластинку, спектрограф и др.);
  2. Строить в своей фокальной плоскости изображение объекта или определенного участка неба;
  3. Помочь различать объекты, расположеные на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом.

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

4. Рефракторные телескопы

Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую линзу-объектив. Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

При создании рефрактора два обстоятельства определяли успех: высокое качество оптического секла и искусство его шлифовки. По почину Галилея многие из астрономов сами занимались изготовлением линз. Пьера Гинан, учёный XVIII, решил научиться изготовлять рефракторы. В 1799 году Гинану удалось отлить несколько отличных дисков поперечником от 10 до 15 см – успех по тем временам неслыханный. В 1814 г. Гинан изобрел остроумный способ для уничтожения струйчатого строения в стеклянных болванках: отлитые заготовки распиливались и, после удаления брака, снова спаивались. Тем самым, открывая путь к созданию крупных объективов. Наконец Гинану удалось отлить диск диаметром 18 дюймов (45 см). Это был последний успех Пьера Гинана. Над дальнейшей разработкой рефракторов работал знаменитый американский оптик Альван Кларк. Объективы изготовлялись в американском Кембридже, причем испытание их оптических качеств производилось на искусственной звезде в тоннеле длиной 70м. Уже к 1853 году Альван Кларк достиг значительных успехов: в изготовленные им рефракторы удалось наблюдать ряд неизвестных ранее двойных звезд.

В 1878 году Пулковская обсерватория обратилась к фирме Кларка с заказом на изготовление 30-дюймового рефрактора, самого крупного в мире. На изготовление этого телескопа российское правительство ассигновало 300000 рублей. Заказ был выполнен за полтора года, причем объектив изготовил сам Альван Кларк из стекол парижской фирмы Фейль, а механическая часть телескопа была сделана немецкой фирмой Репсальд.

Новый Пулковский рефрактор оказался превосходным, одним из лучших рефракторов мира. Но уже в 1888 году на горе Гамильтон в Калифорнии начала свою работу Ликская обсерватория, оснащенная 36-дюймовым рефрактором Альвана Кларка. Отличные атмосферные условия сочетались здесь с превосходными качествами инструмента.

Рефракторы Кларка сыграли огромную роль в астрономии. Они обогатили планетарную и звездную астрономию открытиями первостепенного значения. Успешная работа на этих телескопах продолжается и поныне.

Рисунок 2. Рефракторный телескоп

Рисунок 3. Рефракторный телескоп

5. Рефлекторные телескопы

Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.

Главное преимущество рефлекторов – отсутствие у зеркал хроматической аберрации. Хроматическая аберрация – искажение изображения, связанное с тем, что световые лучи различных длин волн собираются после прохождения линзы не различном расстоянии от неё; в результате изображение размывается и края его окрашиваются. Изготовление зеркал – дело более легкое, чем шлифовка огромных линзовых объективов, и это также предрешило успех рефлекторов. Из-за отсутствия хроматических аберраций рефлекторы можно делать очень светосильными (до 1:3), что совершенно немыслимо для рефракторов. При изготовлении рефлекторы обходятся гораздо дешевле, чем равные по диаметру рефракторы.

Есть, конечно, недостатки и у зеркальных телескопов. Их трубы открыты, и токи воздуха внутри трубы создают неоднородности, портящие изображение. Отражающие поверхности зеркал сравнительно быстро тускнеют и нуждаются в восстановлении. Для отличных изображений требуется почти идеальная форма зеркал, что трудно исполнить, так как в процессе работы форма зеркал слегка меняется от механических нагрузок и колебаний температуры. И все-таки рефлекторы оказались наиболее перспективным видом телескопов.

В 1663 году Грегори создал схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало.

В 1664 году Роберт Гук изготовил рефлектор по схеме Грегори, но качество телескопа оставляло желать лучшего. Лишь в 1668 году Исаак Ньютон, наконец, построил первый действующий рефлектор. Этот крошечный телескоп по размерам уступал даже галилеевским трубам. Главное вогнутое сферическое зеркало из полированной зеркальной бронзы имело в поперечнике всего 2.5 см., а его фокусное расстояние составляло 6.5 см. Лучи от главного зеркала отражались небольшим плоским зеркалом в боковой окуляр, представлявший собой плоско-выпуклую линзу. Первоначально рефлектор Ньютона увеличивал в 41 раз, но, поменяв окуляр и, снизив увеличение до 25 раз, ученый нашел, что небесные светила при этом выглядят ярче и наблюдать их удобнее.

В 1671 году Ньютон соорудил второй рефлектор, чуть больше первого (диаметр главного зеркала был равен 3.4 см. при фокусном расстоянии 16 см.). Система Ньютона получилась весьма удобной, и она успешно применяется до сих пор.

Рисунок 4. Рефлекторный телескоп

Рисунок 5. Рефлекторный телескоп (система Ньютона)

6. Зеркально– линзовые телескопы (катадиоптрические)

Стремление свести к минимуму всевозможные аберрации телескопов рефлекторов и рефракторов привело к созданию комбинированных зеркально-линзовых телескопов. Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

В этих инструментах функции зеркал и линз разделены таким образом, что зеркала формируют изображение, а линзы исправляют аберрации зеркал. Первый телескоп такого типа был создан жившим в 1930 году в Германии оптиком Б. Шмидтом. В телескопе Шмидта главное зеркало имеет сферическую отражающую поверхность, а значит, тем самым отпадают трудности, связанные с параболизацией зеркал. Естественно, что сферическое зеркало большого диаметра обладает весьма заметными аберрациями, в первую очередь сферической. Сферическая аберрация – это искажение в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы. Для того чтобы максимально уменьшить эти аберрации, Шмидт поместил в центре кривизны главного зеркала тонкую стеклянную коррекционную линзу. На глаз она кажется обыкновенным плоским стеклом, но на самом деле поверхность ее очень сложная (хотя отклонения от плоскости не превышают нескольких сотых долей мм.). Она рассчитана так, чтобы исправить сферическую аберрацию, кому и астигматизм главного зеркала. При этом происходит как бы взаимная компенсация аберраций зеркала и линзы. Хотя в системе Шмидта остаются неисправленными второстепенные аберрации, телескопы такого вида заслуженно считаются лучшими для фотографирования небесных тел. Главная беда телескопа Шмидта заключается в том: из-за сложной формы коррекционной пластинки изготовление её сопряжено с огромными трудностями. Поэтому создание крупных камер Шмидта – редкое событие в астрономической технике.

В 1941 году известный советский оптик Д. Д. Максутов изобрел новый тип зеркально-линзового телескопа, свободного от главного недостатка камер Шмидта. В системе Максутова как и в системе Шмидта главное зеркало имеет сферическую вогнутую поверхность. Однако вместо сложной коррекционной линзы Максутов использовал сферический мениск – слабую рассеивающую выпукло-вогнутую линзу, сферическая аберрация которой полностью компенсирует сферическую аберрацию главного зеркала. А так как мениск слабо изогнут и мало отличается от плоско - параллельной пластинки, хроматическую аберрацию он почти не создает. В системе Максутова все поверхности зеркала и мениска сферические, что сильно облегчает их изготовление.

Рисунок 5. Зеркально-линзовый телескоп

7. Радиотелескопы

Радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Для его приёма построены самые крупные астрономические инструменты – радиотелескопы. Радиотелескоп – это астрономический инструмент, предназначенный для исследования небесных тел в диапазоне радиоволн. Принцип действия радиотелескопа основан на приеме и обработке радиоволн и волн других диапазонов электромагнитного спектра от различных источников излучения. Такими источниками являются: Солнце, планеты, звезды, галактики, квазары и другие тела Вселенной, а так же газ. Металлические зеркала-антенны, которые достигают в диаметре нескольких десятков метров, отражают радиоволны и собирают их подобно оптическому телескопу-рефлектору. Для регистрации радиоизлучения используются чувствительные радиоприёмники.

Благодаря соединению отдельных телескопов удалось значительно повысить их разрешение. Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, позволяют исследовать объекты с небольшими угловыми размерами. Иногда, радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов.

8. Космический телескоп «Хаббл»

С выводом на орбиту телескопа имени Хаббла (HUBBLE SPACE TELESCOPE - HST), астрономия сделала гигантский рывок вперед. Будучи расположенным за пределами земной атмосферы, HST может фиксировать такие объекты и явления, которые не могут быть зафиксированы приборами на Земле. Изображения объектов, наблюдаемых с помощью наземных телескопов, выглядят расплывчатыми из-за атмосферной рефракции, а также из-за дифракции в зеркале объектива. Телескоп «Хаббл» позволяет вести более детальные наблюдения. Проект HST был разработан в НАСА при участии Европейского Космического Агентства (ESA). Этот телескоп-рефлектор, диаметром 2,4 м (94,5 дюйма), выводится на низкую (610 километров) орбиту с помощью американского корабля Спейс Шаттл (SPACE SHUTTLE).Проект предусматривает периодическое техническое обслуживание и замену оборудования на борту телескопа. Проектный срок эксплуатации телескопа - 15 и более лет.

С помощью космического телескопа «Хаббл» астрономы смогли более точно измерить расстояния до звёзд и галактик, уточнив связь между средней абсолютной величиной цефеид и периодом изменения их блеска. Эта связь затем использовалась для более точного определения расстояний до других галактик через наблюдение отдельных цефеид в этих галактиках. Цефеиды – это пульсирующие переменные звёзды, блеск которых плавно меняется в определённых пределах за постоянный период, составляющий от 1 до 50 суток. Большим сюрпризом для астрономов, использующих телескоп «Хаббл», было открытие скоплений галактик в направлениях, которые ранее считались пустым космическим пространством.

9. Заключение

Наш мир очень стремительно меняется. В сфере изучений и науки наблюдается прогресс. Каждое новое изобретение является началом для последующих изучений какой-либо сферы и создания чего-нибудь нового или более усовершенствованного. Так и в астрономии - с созданием телескопа было открыто множество нового, а началось все с создания простого, с точки зрения нашего времени, телескопа Галилея. На сегодняшний день человечество смогло даже вынести телескоп в космос. Мог ли об этом подумать Галилей, когда создавал свой телескоп?

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света, в конечном счете, определяет уровень детализации видимого.

В итоге телескоп имеет три основных назначения: он собирает излучения от небесных светил на приемное устройство; строит в своей фокальной плоскости изображение объекта или определенного участка неба; помогает различать объекты, расположеные на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом.

В наше время невозможно представить изучение астрономии без телескопов.

Список использованной литературы

  1. Б.А.Воронцов-Вельяминов, Е.К.Страут, Астрономия 11 класс; 2002 г
  2. В.Н.Комаров, Увлекательная астрономия, 2002 г
  3. Джим Брейтот, 101 ключевая идея: астрономия; М., 2002 г.
  4. http://mvaproc.narod.ru
  5. http://infra.sai.msu.ru
  6. http://www.astrolab.ru
  7. http://referat.ru; реферат Юрия Круглова по физике на тему

«Устройство, назначение, принцип работы, типы и история телескопа».

8. http://referat.wwww4.com; реферат Виталия Фомина на тему «Принцип

работы и назначение телескопа».

ГОУ Центр образования №548 «Царицыно» Степанова Ольга Владимировна Реферат по астрономии Тема реферата: «Принцип работы и назначение телескопа» Учитель: Закурдаева С.Ю Лудза 2007

Новое на сайте

>

Самое популярное