Домой Удаление Что способна к фагоцитозу. Фагоцитоз и фагоцитарные клетки

Что способна к фагоцитозу. Фагоцитоз и фагоцитарные клетки

Это явление захвата и переваривания чужеродных вредных частиц, попавших в организм, особыми клетками-защитниками. Притом к фагоцитозу способны не только «специально обученные» фагоциты, цель жизни которых заключается в защите здоровья человека, но и клетки, выполняющие в нашем теле совершенно иные задачи… Итак, какие же существуют клетки, способные к фагоцитозу?

Моноциты

При фагоцитозе моноцит справляется с вредными объектами всего за 9 минут. Иногда он поглощает и расщепляет клетки и субстраты, превышающие его по размерам в несколько раз.

Нейтрофилы

Фагоцитоз нейтрофилов осуществляется похожим образом, с той лишь разницей, что они работают по принципу «Светя другим, сгораю сам». Это значит, что, захватив патоген и уничтожив его, нейтрофил погибает.

Макрофаги

Макрофаги - это осуществляющие фагоцитоз лейкоциты, образовавшиеся из моноцитов крови. Они располагаются в тканях: как непосредственно под кожей и слизистыми, так и в глубине органов. Существуют особые разновидности макрофагов, которые находятся в конкретных органах.

Например, в печени «живут» клетки Купфера, задача которых состоит в разрушении старых компонентов крови. В легких располагаются альвеолярные макрофаги . Эти клетки, способные к фагоцитозу, захватывают вредные частицы, проникшие в легкие с вдыхаемым воздухом, и переваривают их, разрушая своими ферментами: протеазами, лизоцимом, гидролазами, нуклеазами и т.д.

Обычные тканевые макрофаги обычно погибают после встречи с патогенами, то есть в этом случае происходит то же, что и при фагоцитозе нейтрофилов.


Дендритные клетки

Эти клетки - угловатые, ветвистые - совершенно не похожи на макрофаги. Тем не менее, они являются их родственниками, так как тоже образуются из моноцитов крови. К фагоцитозу способны только молодые дендритные клетки , остальные в основном «работают» с лимфоидной тканью , обучая лимфоциты правильно реагировать на некоторые антигены.

Тучные клетки

Помимо того, что тучные клетки запускают реакцию воспаления, эти лейкоциты способны к фагоцитозу. Особенность их работы состоит в том, что они уничтожают только грамотрицательные бактерии. Причины такой «разборчивости» не совсем понятны, видимо, у тучных клеток есть к этим бактериям особое сродство.

Они могут уничтожить сальмонеллу, кишечную палочку, спирохету, многих возбудителей ЗППП, но совершенно равнодушно воспримут возбудителя сибирской язвы, стрептококка и стафилококка. Борьбой с ними займутся другие лейкоциты.

Перечисленные выше клетки - это профессиональные фагоциты , об «опасных» свойствах которых известно всем. А теперь несколько слов о тех клетках, для которых фагоцитоз - не самая типичная функция.

Тромбоциты

Тромбоциты, или кровяные пластинки, занимаются главным образом тем, что отвечают за свертываемость крови, прекращают кровотечения, формируют тромбы. Но, помимо этого, у них обнаружены и фагоцитарные свойства. Тромбоциты могут образовывать ложноножки и уничтожать некоторые вредные компоненты, попавшие в организм.

Клетки эндотелия

Оказывается, клеточная выстилка сосудов тоже представляет
опасность для бактерий и прочих «захватчиков», проникших в организм. В крови с чужеродными объектами борются моноциты и нейтрофилы, в тканях их поджидают макрофаги и другие фагоциты, и даже в стенках сосудов, находясь между кровью и тканями, «враги» не могут «чувствовать себя в безопасности». Воистину, возможности защиты организма чрезвычайно велики. При увеличении содержания в крови и тканях гистамина, что происходит при воспалении, фагоцитирующая способность клеток эндотелия, почти незаметная до этого, возрастает в несколько раз!

Гистиоциты

Под этим собирательным названием объединяют все клетки тканей: соединительной ткани, кожи, подкожной клетчатки, паренхимы органов и так далее. Раньше этого никто не мог предположить, но оказывается, при определенных условиях многие гистиоциты способны менять свои «жизненные приоритеты» и тоже приобретать способность к фагоцитозу! Повреждения, воспаление и другие патологические процессы пробуждают в них эту способность, которая в норме отсутствует.

Фагоцитоз и цитокины:

Итак, фагоцитоз - процесс всеобъемлющий. В обычных условиях его осуществляют специально предназначенные для этого фагоциты, но критические ситуации могут вынудить к нему даже те клетки, для которых такая функция не характера. Когда организму угрожает реальная опасность, другого выхода просто нет. Это как на войне, когда оружие в руки берут не только мужчины, но и вообще все, кто способны его удержать.

В процессе фагоцитоза клетки образуют цитокины. Это так называемые сигнальные молекулы, при помощи которых фагоциты передают информацию другим компонентам иммунной системы . Самыми важными из цитокинов являются трансфер факторы, или факторы передачи - белковые цепочки, которые можно назвать самым ценным источником иммунной информации в организме.

Чтобы фагоцитоз и другие процессы в иммунной системе проходили благополучно и полноценно, можно использовать препарат Трансфер Фактор , действующее вещество которого и представлено факторами передачи. С каждой таблеткой средства организм человека получает порцию бесценных сведений о правильной работе иммунитета, полученных и накопленных многими поколениями живых существ.

При приеме Трансфер Фактора нормализуются процессы фагоцитоза, ускоряется ответ иммунной системы на проникновение возбудителей, повышается активность клеток, защищающих нас от агрессоров. Кроме того, через нормализацию работы иммунитета улучшаются функции всех органов. Это позволяет повысить общий уровень здоровья и, если это необходимо, помочь организму в борьбе с практически любым заболеванием.

Иммунология

Занятие № 1

Тема: « Учение об иммунитете. Неспецифические факторы защиты».

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Такое определение подчеркивает:

    что иммунология изучает способы и механизмы защиты от любых генетически чужеродных для данного организма антигенов, будут они микробного, животного или другого происхождения;

    что механизмы иммунитета направлены против антигенов, которые могут проникать в организм, как из вне, так и формироваться в самом организме;

    что система иммунитета направлена на сохранение и поддержание генетически детерменированной антигенной индивидуальности каждой особи, каждого вида в целом

Иммунная защита о биологической агрессии достигается триадой реакций , включающей:

    распознавание чужеродных и измененных собственных макромолекул (АГ)

    удаление из организма АГ и несущих их клеток.

    запоминание контакта с конкретными АГ, определяющее их ускоренное удаление при повторном поступлении в организм.

Основоположники иммунологии:

    Луи Пастер – принцип вакцинации.

    И. И. Мечников – учение о фагоцитозе.

    Пауль Эрлих – гипотеза об антителах.

О важности иммунологии как науки свидетельствует то, что авторы многих открытий отмечены Нобелевской премией.

Факторы неспецифической резистентности организма

В неспецифической защите от микробом и антигенов важную роль, как указывалось выше, играют три барьера : 1) механический, 2) физико-химический и 3) иммунобиологический. Основными защитными факторами этих барьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комплемент, интерферон, ингибиторы сыворотки крови.

Кожа и слизистые оболочки

Многослойный эпителий здоровой кожи и слизистых оболочек обычно непроницаем для микробов и макромолекул. Однако при малозаметных микроповреждениях, воспалительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые не могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут проникать в макроорганизм межклеточно, через клеточно и с помощью фагоцитов, переносящих поглощенных микробов через эпителий и слизистых оболочек. Свидетельством этому является инфицирование в естественных условиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного трактат урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизис­тые оболочки желудочно-кишечного тракта и дыхательных путей.

Физико-химическая защита

На чистой и неповрежденной коже обычно держится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактерицидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для проникающих перорально бактерий, вирусов, антигенов, так как последние инактивируются и разрушаются под влиянием кислого содер­жимого желудка (рН 1,5-2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуемые нормальной микробной флорой кишечника, а также трипсин, панкреатин, липаза, амилазы и желчь.

Иммунобиологическая защита

Фагоцитоз

Фагоцитоз (от греч. phagos - пожираю, cytos - клетка), открытый и изученный И. И. Мечниковым, является одним из ос­новных мощных факторов, обеспечивающих резистентность организма, защиту от инородных веществ, в том числе микробов. Это наиболее древняя форма иммунной защиты, которая появилась уже у кишечнополостных.

Механизм фагоцитоза состоит в поглоще­нии, переваривании, инактивации инород­ных для организма вешеств специализиро­ванными клетками - фагоцитами.

И. И. Мечников к фагоцитирующим клет­ кам отнес макрофаги и микрофаги. Наиболее изучены и численно преобладающие это моноциты крови и образующиеся из них макрофаги тканей. Длительность пребывания моноцитов в кровотоке составляет 2-4 сут. После этого они мигрируют в ткани, превращаясь в макрофаги. Продолжительность жизни макрофагов – от 20 сут до 7 мес (речь идет о различных субпопуляциях тканевых макрофагов); в большинстве это – 20 -40 дней.

Макрофаги крупнее моноцитов из-за распластанной формы. Макрофаги подразделяются на резидентные (стабильно локализующиеся в определенных тканях) и подвижные (мобилизуемые в очаг воспаления) В на­стоящее время все фагоциты объединены в единую мононуклеарную фагоцитирующую систему :

В нее включены тканевые макрофаги (альвеолярные, перитонеальные и др.), клет­ ки Лангерганса и Гренстейна (эпидермоциты кожи), клетки Купфера (звездчатые ретикулоэндотелиоциты), эпителиоидные клетки, нейтрофилы и эозинофилы крови и некото­рые другие.

Основные функции фагоцитов .

    удаляют из ор­ганизма отмирающие клетки и их структуры (эритроциты, раковые клетки);

    удаляют неметабилизируемые неорганические вещества, попадающие во внутреннюю среду организма тем или иным путем (например, частички угля, минеральную и другую пыль, проника­ющую в дыхательные пути);

    поглощают и инактивируют микробы (бактерии, вирусы, грибы), их останки и продукты;

    синтези­руют разнообразные биологически активные вещества, необходимые для обеспечения резистентности организма (некоторые компо­ненты комплемента, лизоцим, интерферон, интерлейкины и др.);

    участвуют в регу­ляции иммунной системы;

    осуществляют «ознакомление» Т-хелперов с антигенами, т. е. участвуют в кооперации иммунокомпетентных клеток.

Следовательно, фагоциты являются, с од­ной стороны, своеобразными «мусорщика­ми», очищающими организм от всех ино­родных частиц независимо от их природы и происхождения (неспецифическая функ­ция), а с другой стороны, участвуют в про­цессе специфического иммунитета путем представления антигена иммунокомпетентным клеткам (Т~ лимфоцитам) и регуляции и к активности.

Стадии фагоцитоза . Процесс фагоцитоза, т. е. поглощения инородного вещества клетка­ми, имеет несколько стадий:

    приближение фагоцита к объекту поглощения (хемотаксис);

    адсорбция п оглощаемого вещества на по­верхности фагоцита;

    поглощение вещества путем инвагинации клеточной мембраны с об­разованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещест­во;

    слияние фагосомы с лизосомой клетки с образованием фаголизосомы;

    активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита . Для осу­ществления своих функций фаго­циты располагают обширным набором литических ферментов, а также продуцируют перекисные и N0" ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования. На цитоплазматической мембране находятся рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «пе­реварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно пе­ремещаться к объекту фагоцитоза по гради­енту концентрации особых биологически ак­тивных веществ - хемоаттрактантов. Такое передвижение получило название хемотаксис (от греч. chymeia - искусство сплавления металлов и taxis - расположение, построе­ние). Это АТФ-зависимый процесс, в кото­ром участвуют сократительные белки актин и миозин. К числу хемоаттрактантов относятся, например, фрагменты компонентов компле­мента (СЗа и С5а), лимфокины ИЛ-8 и др., продукты распада клеток и бактерий, плюс измененный эпителий кровеносного сосуда в месте воспаления. Как известно, ранее других клеток в очаг воспаления мигрируют нейтрофилы, существенно позже туда поступают макрофаги. Однако скорость хемотаксического перемещения одинакова. Различия связаны с разным набором факторов, служащих для них хемоаттрактантами, с более быстрой начальной реакцией нейтрофилов (запуск хемотаксиса), а также присутствие нейтрофилов в пристеночном слое сосудов (т.е. их готовность к проникновению в ткани)

Адсорбция вещества на поверхности фа­гоцита осуществляется за счет слабых хи­мических взаимодействий и происходит ли­бо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам компле­мента). Мембранные структуры, взаимодействующие при контакте фагоцитов с клетками мишенями (в частности, опсонины на поверхности микробной клетки и их рецепторы на поверхности фагоцита), расположены равномерно на взаимодействующих клетках. Это создает условия для последовательного обхвата частицы псевдоподиями, что тотально вовлекает в процесс всю поверхность фагоцита и приводит к поглощению частицы вследствие замыкания мембраны по принципу «застежки молнии». «Захват» фагоцитом вещества вызыва­ет выработку большого количества перекисных радикалов («кислородный взрыв») и N0", которые вызывают необратимые, летальные повреждения как цельных клеток, так и отде­льных молекул.

Поглощение адсорбированного на фаго­ците вещества происходит путем эндоцито за. Это энергозависимый процесс, связан­ный с преобразованием энергии химических связей молекулы АТФ в сократительную ак­тивность внутриклеточного актина и мио­зина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточ­ного пузырька - фагосомы напоминает «за­стегивание молнии». Внутри фагосомы про­должается атака поглощенного вещества активными радикалами. После слияния фа­госомы и лизосомы и образования в цитоп­лазме фаголизосомы происходит активация лизосомальных ферментов, которые разру­шают поглощенное вещество до элементар­ных составляющих, пригодных для дальней­шей утилизации для нужд самого фагоцита.

В фаголизосоме существует несколько систем факторов бактерицидности :

    факторы, требующие участия кислорода

    азотистые метаболиты

    активные субстанции, в том числе и ферменты

    локальное закисление.

    Одной из основных форм разрушения микроорганизма внутри макрофага – это кислородный взрыв . Кислородный, или дыхательный взрыв – это процесс образования продуктов частично восстановленного кислорода, свободных радикалов, перекисей и других продуктов, обладающих высокой антимикробной активностью. Эти процессы развиваются в течение секунд, что и определило их обозначение как «взрыв». Обнаружены различия между КВ нейтрофилов и макрофагов , в первом случаи реакция более кратковременная, но интенсивнее, она приводит к большому накоплению перекиси водорода и не зависит от синтеза белков, во втором случаи она более длительная, но подавляется ингибитором синтеза белка циклогексидином.

    Окись азота и радикал NO (особенно важно при разрушении микобактерий).

    Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

    Затрудняется поступление в микробную клетку питательных веществ в следствии снижения ее электронного потенциала. В кислой среде повышается активность ферментов.

Фагоциты, как правило, «переваривают» за­хваченные бактерии, грибы, вирусы, осущест­вляя таким образом завершенный фагоцитоз. Однако в ряде случаев фагоцитоз носит неза­вершенный характер : поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной оспы) блокируют ферментативную активность фагоцита, не погибают, не разрушаются и да­же размножаются в фагоцитах. Такой процесс получил название незавершенный фагоцитоз.

Небольшой олигопептид может быть эндоцитирован фагоцитом и после процессинга (т. е. ограниченного протеолиза) включен в состав молекулы антигена гистосовметимо ти II класса. В составе сложного макромолекулярного комплекса олигопептид выставля­ется (экспрессируется) на поверхности клетки для «ознакомления» с ним Т-хелперов.

Фагоцитоз активируется под влиянием антител-опсонинов, адъювантами, компле­ментом, иммуноцитокинами (ИЛ-2) и дру­гими факторами. Механизм активирующего действия опсонинов основан на связывании комплекса антиген-антитело с рецепторами к Fc-фрагментам иммуноглобулинов на по­верхности фагоцитов. Аналогичным образом действует комплемент, который способствует связыванию на специфических для него ре­цепторах фагоцита (С-рецепторах) комплекса антиген-антитело. Адъюванты укрупняют мо­лекулы антигена и таким образом облегчают процесс его поглощения, так как интенсив­ность фагоцитоза зависит от величины погло­щаемой частицы.

Активность фагоцитов характеризуется фа­ гоцитарными показателями и опсоно-фагоци тарным индексом.

Фагоцитарные показатели оцениваются числом бактерий, поглощенных или «переваренных» одним фагоцитом в еди­ницу времени, а опсонофагоцитарный индекс представляет отношение фагоцитарных пока­зателей, полученных с иммунной, т. е. содер­жащей опсонины, и неиммунной сывороткой. Эти показатели используются в клинической практике для определения иммунного статуса индивидуума.

Секреторная активность макрофагов. Т акая активность свойственна преимущественно активированным фагоцитирующим клеткам, но по крайней мере макрофаги выделяют субстанции (лизоцим, простагландин Е2) спонтанно. Активность выражается в двух формах :

1 . выброс содержимого гранул (для макрофагов лизосом), т.е. дегрануляция .

2 . секреция с участием ЭПР и аппарата Гольджи.

Дегрануляция свойственна всем основным фагоцитирующим клеткам, а второй тип исключительно макрофагам.

С остав гранул нейтрофилов разделен на две части, одни действуют при нейтральных или щелочных значения ph, другая кислые гидролазы.

Главная особенность макрофагов в сравнение с нейтрофилами, это значительно более выраженная секреция, не связанная с дегрануляцией.

Макрофаги спонтанно секретируют : лизоцим, компаненты комплимента, ряд ферментов (например, эластазу), фибронектин, апопротеин А и липопротеиновую липазу. При активизации значительно увеличивается секреция: С2, С4, фибронектина, активатора плазминогена, включается синтез цитокинов (ИЛ1, 6 и 8), ФНОα, интерферонов α, β, гормонов и др.

Активация макрофагов приводит к процессам дегрануляции фагосом и лизосом с выделение продуктов, аналогичных тем, которые выделяются при дегрануляции нейтрофилов. Комплекс этих продуктов обуславливает внеклеточный бактериолиз и цитолиз, а так же переваривание компонентов разрушенных клеток. Однако внеклеточная бактерицидная активность у макрофагов выражена слабее, чем у нейтрофилов . Макрофаги не вызывают массированного аутолиза, приводящего к формированию гноя.

Тромбоциты

Тромбоциты также играют важную роль в иммунитете. Они возникают из мегакариоцитов, пролиферацию которых усиливает ИЛ-11. Тромбоциты имеют на своей поверхности ре­цепторы к IgG и IgE, к компонентам компле­мента (С 1 и СЗ), а также антигены гистосовместимости I класса. На тромбоциты оказывают влияние образующиеся в организме иммунные комплексы антиген + антитело (АГ+АТ), акти­вированный комплемент. В результате такого воздействия тромбоциты выделяют биологи­чески активные вещества (гистамин, лизоцим, (3-лизины, лейкоплакины, простагландины и др.), которые принимают участие в процессах иммунитета и воспаления.

Комплемент

Природа и характеристика комплемента . Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899 г. французским имму­нологом Ж. Борде, назвавшим его «алекси­ном». Современное название комплементу дал П. Эрлих. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

В состав комплемента входят:

    20 взаимодействующих между собой белков,

- девять из которых являются основными ком­ понентами комплемента ; их обозначают циф­рами: С1, С2, СЗ, С4... С9.

Важную роль играют также факторы В, D и Р (пропердин).

Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: Cl-Clq, Clr, Cls; СЗ-СЗа, СЗЬ; С5-С5а, С5Ь и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5-10 % от всех белков крови), часть из них образуют фагоциты. После активации они распадаются на субъединицы: легкие (а), лишены ферментативной активности, но обладают собственной активностью (хемотакические факторы и анафилогены) и тяжелые (b), обладающие ферментативной активностью.

Функции комплемента многообразны:

    участвует в лизисе микробных и других клеток (цитотоксическое действие);

    обладает хемотаксической активностью;

    принимает учас­тие в анафилаксии;

    участвует в фагоцитозе.

Следовательно, комплемент является компонен­ том многих иммунолитических реакций, направ­ ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток.

Известны три пути активации комплемента :

    классический,

    альтернативный

    лектиновый.

По классическому пути комплемент активирует­ ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется лити ческий или мембраноатакующий комплекс (цилиндрический комплекс), который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образу­ется мембраноатакующий комплекс.

Лектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток (отсутствует в макрорганизме) катализирует С4 (подобно С1grs). Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов - субъединицы СЗа и СЗЬ, С5а и С5Ь и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗЬ - играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са 2+ и Mg 2+ .

Замедление выведения ИК приводит к их отложению на биомембранах макроорганизма, как следствие развитие иммунопатоогии, т. к. они привлекают в очаг отложения макрофаги и другие эффекторы иммунного воспаления.

Лизоцим.

Особая и немаловажная роль в естествен­ной резистентности принадлежит лизоциму, открытому в 1909 г. П. Л. Лащенко и выделен­ному и изученному в 1922 г. А. Флемингом.

Лизоцим - это протеолитический фермент мурамидаза (от лат. mums - стенка) с моле­кулярной массой 14-16 кДа, синтезируемый макрофагами, нейтрофилами и другими фаго­цитирующими клетками и постоянно поступа­ющий в жидкости и ткани организма. Фермент содержится в крови, лимфе, слезах, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует лизоцим лишь только в спинно­мозговой жидкости и передней камере гла­за. В сутки синтезируется несколько десятков граммов фермента.

Механизм действия лизо цима сводится к разрушению гликопротеидов (мурамиддипептида) клеточной стенки бакте­рий, что ведет к их лизису и способствует фаго­цитозу поврежденных клеток. Следовательно, лизоцим обладает бактерицидным и бактериостатическим действием. Кроме того, он акти­вирует фагоцитоз и образование антител.

Нарушение синтеза лизоцима ведет к сни­жению резистентности организма, возник­новению воспалительных и инфекционных заболеваний; в таких случаях используют для лечения препарат лизоцима, получаемый из яичного белка или путем биосинтеза, так как он продуцируется некоторыми бактериями (например, Bacillus subtilis ), растениям семейс­тва крестоцветных (редис, репа, хрен, капуста и т. д.). Химическая структура лизоцима извес­тна, и он синтезирован химическим способом.

Интерферон

Интерферон относится к важным защитным белкам иммунной системы. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении интерференции вирусов (лат. inter - меж­ду и ferens - несущий), т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном. В насто­ящее время интерферон достаточно хорошо изучен, известны его структура и свойства, и он широко используется в медицине как ле­чебное и профилактическое средство.

Интерферон представляет собой семейство белков-гликопротеидов с молекулярной мас­сой от 15 до 70 кДа, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ ют три типа : α, β и β-интерфероны.

Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитар­ного; бета- интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными килле­рами, т е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой , так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномоду лирующей активностью , стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Фагоцитоз выполняет важнейшую функцию гранулоцитарных клеток крови – защиты от покушающихся на инвазию во внутреннюю среду организма инородных ксеноагентов (предупреждения или замедления этой инвазии, а также «переваривания» последних, если они все же смогли внедриться).

Нейтрофилы выделяют различные субстанции в окружающую среду и, следовательно, выполняют секреторную функцию.

Фагоцитоз = эндоцитоз – это суть процесс поглощения ксеновещества обволакивающей его частью цитоплазматической мембраны (цитоплазмы), вследствие чего инородное тело включается в клетку. В свою очередь, эндоцитоз делится на пиноцитоз («клеточное питье») и фагоцитоз («питание клетки»).

Фагоцитоз очень хорошо виден уже на светооптическом уровне (в отличие от пиноцитоза, связаного с перевариванием микрочастиц, в том числе и макромолекул, и поэтому его можно изучать лишь с помощью электронной микроскопии). Оба процесса обеспечиваются механизмом инвагинации мембраны клетки, в результате чего в цитоплазме образуются различной величины фагосомы. К пиноцитозу способно большинство клеток, в то время как к фагоцитозу способны лишь нейтрофилы, моноциты, макрофаги и, в меньшей степени, базофилы и эозинофилы.

Попав в очаг воспаления, нейтрофилы контактируют с чужеродными агентами, поглощают их и подвергают воздействию пищеварительных энзимов (впервые такая последовательность описана Ильей Мечниковым в 80-х гг. XIX в.). Поглощая разнообразные ксеноагенты, нейтрофилы редко переваривают аутологичные клетки.

Уничтожение бактерий лейкоцитами осуществляется в результате сочетанного воздействия протеаз пищеварительных вакуолей (фаготом), а также деструктивного эффекта токсичных форм кислорода 0 2 и перекиси водорода Н 2 0 2 , которые также выделяются в фагосому.

Важность роли, которую выполняют фагоцитирующие клетки в деле защиты организма, не выделялась специально вплоть до 40-х гг. прошлого века – пока Wood and Iron не доказали, что исход инфекции решается задолго до появления в сыворотке специфических антител.

О фагоцитозе

Фагоцитоз одинаково успешно решается как в атмосфере чистого азота, так и в атмосфере чистого кислорода; он не ингибируется цианидами и динитрофенолом; однако он тормозится ингибиторами гликолиза.

К настоящему времени выяснена эффективность сочетанного воздействия слияния фагосом и лизосом: многолетняя полемика закончилась выводом, что весьма важным является одновременное действие на ксеноагенты сыворотки и фагоцитоза. Нейтрофилы, эозинофилы, базофилы и мононуклеарные фагоциты способны к направленному движению под влиянием хемотаксических агентов, но для такой их миграции необходим также градиент концентрации.

Как фагоциты отличают различные частицы и поврежденные аутологичные клетки от нормальных – до сих пор не выяснено. Однако эта их способность, пожалуй, является сущностью фагоцитарной функции, общим принципом которой является: подлежащие поглощению частицы должны вначале быть прикреплены (адгезированы) к поверхности фагоцита при содействии ионов Са ++ или Mg ++ и катионов (в противном случае слабо прикрепленные частицы (бактерии) могут быть смыты с фагоцитирующей клетки). Усиливают фагоцитоз и опсонины, а также ряд сывороточных факторов (например, лизоцим), но непосредственно воздействуя не на фагоциты, а на частицы, подлежащие поглощению.

В некоторых случаях иммуноглобулины облегчают контакт между частицами и фагоцитами, а определенные вещества в нормальной сыворотке, возможно, играют роль в поддержании фагоцитов при отсутствии специфических антител. Нейторофилы, по-видимому, не способны поглощать неопсонированные частицы; в то же время макрофаги способны к нейтрофильному фагоцитозу.

Нейтрофилы

В дополнение к известному факту, что содержимое нейтрофилов освобождается пассивно в результате спонтанного клеточного лизиса, ряд субстанций, вероятно, активизируется лейкоцитами, высвобождаясь из гранул (рибонуклеаза, дезоксирибонуклеаза, бета-глюкоронидаза, гиалуронидаза, фагоцитин, лизоцим, гистамин, витамин В 12). Содержимое специфических гранул высвобождается раньше содержимого первичных.

Приводят некоторые уточнения, касающиеся морфофункциональных особенностей нейтрофилов: трансформации их ядер определяют степень их зрелости. Так, например:

– для палочкоядерных нейтрофилов характерна дальнейшая конденсация их ядерного хроматина и его трансформация в колбасовидную или палочковидную форму при относительно одинаковом диаметре последнего по всей длине;

– в дальнейшем наблюдается сужение в каком-либо месте, вследствие чего оно делится на доли, соединенные тонкими мостиками гетерохроматина. Такие клетки уже трактуются как полиморфноядерные гранулоциты;

– определение долей ядра и его сегментации зачастую необходимо для диагностических целей: ранние фолиодефицитные состояния характеризуются более ранним выходом в кровь из костного мозга молодых форм клеток;

– на полиморфноядерной стадии ядро, окрашенное по Райту, имеет глубокий пурпурный цвет и содержит конденсированный хроматин, доли которого связаны очень тонкими перемычками. При этом цитоплазма, содержащая мелкие гранулы, выглядит бледно-розовой.

Отсутствие единого мнения насчет трансформаций нейторофилов, наводит все же на мысль, что их деформации облегчают им прохождение сквозь сосудистую стенку к месту воспаления.

Арнет (1904) полагал, что деление ядра на доли продолжается и у созревшей клетки и что гранулоциты с тремя-четырмя сегментами ядра являются более зрелыми, чем с бисегментами. «Старые» полиморфноядерные лейкоциты не способны воспринимать нейтральную окраску.

Благодаря достижениям иммунологии стали известны новые факты, подтверждающие гетерогенность нейтрофилов, иммунологические фенотипы которых коррелируют с мофологическим стадиями их развития. Весьма важным является то, что вследствие определения функции различных агентов и факторов, контролирующих их экспрессию, можно понять последовательность изменений, сопровождающих созревание и дифферециацию клеток, происходящую на молекулярном уровне.

Для эозинофилов характерно содержание ферментов, обнаруживаемых у нейтрофилов; однако в их цитоплазме формируется лишь один тип гранулкристаллоидов. Постепенно гранулы обретают ангулярную форму, характерную для зрелых полимофноядерных клеток.

Конденсация ядерного хроматина, уменьшение размеров и окончательное исчезновение нуклеол, редукция аппарата Гольджи и двойная сегментация ядра – все эти изменения характерны для созревших эозинофилов, которые – как и нейтрофилы – столь же подвижны.

Эозинофилы

У человека в крови нормальная концентрация эо- зинофилов (по подсчету лейкоцитарного счетчика) составляет менее 0,7-0,8 х 10 9 клеток/л. Их количество имеет тенденцию повышаться в ночное время. Физические нагрузки их количество уменьшают. Продукция эозинофилов (как и нейтрофилов) у здорового человека совершается в костном мозге.

Базофильный ряд (Эрлих, 1891) – это самые малочисленные лейкоциты, но их функция и кинетика изучены недостаточно.

Базофилы

Базофилы и тучные клетки морфологически весьма сходны, однако по кислому содержимому их гранул, содержащих гистамин и гепарин, они существенно различаются. Базофилы значительно уступают тучным клеткам и по размеру, и по количеству гранул. Тучные клетки, в отличие от базофильных, содержат гидролитические ферменты, серотонин и 5-гидрокситриптамин.

Базофильные клетки дифференцируются и созревают в костном мозге и, подобно другим гранулоцитам, циркулируют в кровяном русле, не обнаруживаясь в соединительной ткани в нормальной ситуации. Тучные клетки, напротив, связаны с соединительной тканью, окружающей кровеносные и лимфатические сосуды, нервы, ткань легких, ЖКТ и кожу.

Тучные клетки обладают способностью освобождаться от гранул, выбрасывая их наружу («экзоплазмоз»). Базофилы после фагоцитоза подвергаются внутренней диффузной дегрануляции, но к «экзоплазмозу» они не способны.

Первичные базофильные гранулы формируются весьма рано; они ограничены мембраной шириной 75 А, идентичной наружной мембране и мембране везикул. Они содержат большое количество гепарина и гистамина, медленно реагирующую субстанцию анафилаксии, каллекреин, эозинофильный хемотаксический фактор и фактор активизации тромбоцитов.

Вторичные – более мелкие – гранулы также имеют мембранное окружение; их относят к пероксидазонегативным. Для сегментированных базофилов и для эозинофилов характерны крупные и многочисленные митохондрии, а также небольшое количество гликогена.

Гистамин – основной компонент базофильных гранул тучных клеток. Метахроматическое окрашивание базофилов и тучных клеток объясняет содержание в них протеогликанов. Гранулы тучных клеток содержат преимущественно гепарин, протеазы и ряд энзимов.

У женщин количество базофилов изменяется в зависимости от менструального цикла: с наибольшим количеством в начале кровотечения и уменьшением к концу цикла.

У склонных к аллергическим реакциям лиц количество базофилов изменяется, наряду с IgG, во все время цветения растений. Параллельное уменьшение количества базофилов и эозинофилов в крови наблюдается при использовании стероидных гормонов; установлено также общее влияние гипофизарно-надпочечниковой системы на оба этих клеточных ряда.

Малочисленность базофилов и тучных клеток в кровотоке затрудняет определение как распределения, так и продолжительности пребывания этих пулов в кровяном русле. Базофилы крови способны к медленным движениям, что позволяет им мигрировать через кожу или брюшину после введения чужеродного белка.

Способность к фагоцитозу, остается невыясненной как для базофилов, так и для тучных клеток. Скорее всего, основной функцией для них является экзоцитоз (выбрасывание содержимого гранул, богатых гистамином, особенно у тучных клеток).

Защитная роль подвижных клеток крови и тканей была впер­вые обнаружена И.И. Мечниковым в 1883 г. Он назвал эти клетки фагоцитами и сформулировал основные положения фагоцитарной теории иммунитета.

Все фагоцитирующие клетки организма, по И.И. Мечникову, под­разделяются на макрофаги и микрофаги. К микрофагам относятся полиморфноядерные гранулоциты крови: нейтрофилы, эозинофилы и базофилы . Макрофаги различных тканей организма (соединитель­ной ткани, печени, легких и др.) вместе с моноцитами крови и их костномозговыми предшественниками (промоноциты и монобласты) объединены в особую систему мононуклеарных фагоцитов (СМФ). СМФ филогенетически более древняя по сравнению с иммунной системой. Она формируется в онтогенезе достаточно рано и имеет определенные возрастные особенности.

Микрофаги и макрофаги имеют общее миелоидное происхождение - от полипотентной стволовой клетки, которая является единым предшественником грануло- и моноцитопоэза. В периферической крови содержится больше гранулоцитов (от 60 до 70% всех лейкоцитов крови), чем моноцитов (от 8 до 11%). Вместе с тем длительность циркуляции моноцитов в крови значительно боль­ше (полупериод 22 ч), чем короткоживущих гранулоцитов (полупери­од 6,5 ч). В отличие от гранулоцитов крови, являющихся зрелыми клетками, моноциты, покидая кровяное русло, в соответствующем микроокружении созревают в тканевые макрофаги. Внесосудистый пул мононуклеарных фагоцитов в десятки раз превышает их число в крови. Особенно богаты ими печень, селезенка, легкие.

Все фагоцитирующие клетки характеризуются общностью ос­новных функций, сходством структур и метаболических процессов. Наружная плазматическая мембрана всех фагоцитов является актив­но функционирующей структурой. Она отличается выраженной склад­чатостью и несет множество специфических рецепторов и антиген­ных маркеров, которые постоянно обновляются.Фагоци­ты снабжены высокоразвитым лизосомным аппаратом, в котором содержится богатый арсенал ферментов. Активное участие лизосом в функциях фагоцитов обеспечивается способностью их мембран к сли­янию с мембранами фагосом или с наружной мембраной. В последнем случае происходит дегрануляция клеток и сопутствующая сек­реция лизосомных ферментов во внеклеточное пространство. Фагоцитам присущи три функции:

Защитная, связанная с очисткой организма от инфекционных агентов, продуктов распада тканей и т.д.;

Представляющая, заключающаяся в презентации лимфоци­там антигенных эпитопов на мембране фагоцита;

Секреторная, связанная с секрецией лизосомных ферментов и других биологически активных веществ - цитокинов, играющих важную роль в иммуногенезе.


Различают следующие последовательно протекающие стадии фа­гоцитоза.

1. Хемотаксис (приближение).

2. Адгезия (прикрепление,прилипание).

3. Эндоцитоз (погружение).

4. Переваривание.

1. Хемотаксис - целенаправленное передвижение фагоцитов в направлении химического градиента хемоаттрактантов в окружающей среде. Способность к хемотаксису связана с наличием на мембране специфических рецепторов для хемоаттрактантов, в качестве которых могут выступать бактериальные компоненты, продукты деградации тканей организма, активированные фракции системы комплемента - С5а, СЗа, продукты лимфоцитов - лимфокины.

2. Адгезия (прикрепление) также опосредована соответствую­щими рецепторами, но может протекать в соответствии с законами неспецифического физико-химического взаимодействия. Адгезия не­посредственно предшествует эндоцитозу (захвату).

3.Эндоцитоз является основной физиологической функцией так называемых профессиональных фагоцитов. Различают фагоцитоз - в отношении частиц с диаметром не менее 0,1 мкм и пиноцитоз - в отношении более мелких частиц и молекул. Фагоцитирующие клетки способны захватывать инертные частицы угля, кармина, латекса об­теканием их псевдоподиями без участия специфических рецепторов.В то же время фагоцитоз многих бактерий, дрожжеподобных грибов рода СапсИёа и других микроорганизмов опосредован специальными маннозофукозными рецепторами фагоцитов, распознающими углевод­ные компоненты поверхностных структур микроорганизмов. Наибо­лее эффективным является фагоцитоз, опосредованный рецепторами, для Fс-фрагмента иммуноглобулинови для СЗ-фракции комплемента. Такой фагоцитоз называют иммунным, так как он про­текает при участии специфических антител и активированной систе­мы комплемента, опсонизирующих микроорганизм. Это делает клет­ку высокочувствительной к захвату фагоцитами и приводит к после­дующей внутриклеточной гибели и деградации. В результате эндоцитоза образуется фагоцитарная вакуоль - фагосома.

4.Внутриклеточное переваривание начинается по мере по­глощения бактерий или других объектов. Оно происходит в фаго-лизосомах , образующихся за счет слияния первичных лизосом с фагосомами. Захваченные фагоцитами микроорганизмы погибают в результате осуществления механизмов микробоцидности этих кле­ток.

Выживание фагоцитированных микроорганизмов могут обес­печивать различные механизмы. Одни патогенные агенты способны препятствовать слиянию лизосом с фагосомами (токсоплазмы, микобактерии туберкулеза). Другие обладают устойчивостью к действию лизосомных ферментов (гонококки, стафилококки, стрептококки груп­пы А и др.). Третьи после эндоцитоза покидают фагосому, избегая действия микробоцидных факторов, и могут длительно персистировать в цитоплазме фагоцитов (риккетсии и др.). В этих случаях фаго­цитоз остается незавершенным.

Презентативная, или представляющая, функция макрофагов состоит в фиксации на наружной мембране антигенных эпитопов микроорганизмов и других чужеродных агентов. В таком виде они бывают представлены макрофа­гами для их специфического распознавания клетками иммунной сис­темы - Т-лимфоцитами.

Секреторная функция заключается в секреции фазоцитами биологически активных веществ - цитокинов. К ним относятся вещества, оказывающие регулирующее действие на пролиферацию, дифференциацию и функции фагоцитов, лимфоцитов, фибробластов и других клеток. Особое место среди них занимает интерлей-кин-1 (ИЛ-1), который секретируется макрофагами. Он активирует многие функции Т-лимфоцитов, в том числе продукцию интерлейкина-2 (ИЛ-2). ИЛ-1 и ИЛ-2 являются клеточными медиаторами, участвующими в регуляции иммуногенеза и разных форм иммун­ного ответа. Одновременно ИЛ-1 обладает свойствами эндогенно­го пирогена, поскольку он индуцирует лихорадку, действуя на ядра переднего гипоталамуса.

Макрофаги продуцируют и секретируют такие важные регуляторные факторы, как простагландины, лейкотриены, циклические нукле-отиды с широким спектром биологической активности.

Наряду с этим фагоциты синтезируют и секретируют ряд продук­тов с преимущественно эффекторной активностью: антибакте­риальной, антивирусной и цитотоксической. К ним относятся кисло­родные радикалы, компоненты комплемента, лизоцим и другие лизосомные ферменты, интерферон. За счет этих факторов фагоциты могут убивать бактерии не только в фаголизосомах, но и вне клеток, в ближайшем микроокружении.

Рассмотренные функции фагоцитирующих клеток обеспечивают их активное участие в поддержании гомеостаза организма, в процес­сах воспаления и регенерации, в неспецифической противоинфекционной защите, а также в иммуногенезе и реакциях специфического клеточного иммунитета (ГЗТ). Раннее вовлечение фагоцитирующих клеток (сначала - гранулоцитов, затем - макрофагов) в ответную реакцию на любую инфекцию или какое-либо повреждение объясня­ется тем, что микроорганизмы, их компоненты, продукты некроза тканей, белки сыворотки крови, вещества, секретируемые другими клетками, являются хемоаттрактантами для фагоцитов. В очаге вос­паления происходит активация функций фагоцитов. Макрофаги при­ходят на смену микрофагам. В тех случаях, когда воспалительной реакции с участием фагоцитов оказывается недостаточно для очище­ния организма от возбудителей, тогда секреторные продукты макро­фагов обеспечивают вовлечение лимфоцитов и индукцию специфи­ческого иммунного ответа.

1. Нейтрофилы первыми проникают в очаг воспаления, фагоцитируют микробы. Кроме того, лизосомальные ферменты распадающихся нейтрофилов размягчают окружающие ткани и формируют гнойный очаг.

2. Моноциты, мигрируя в ткани, превращаются там, в макрофаги и фагоцитируют все, что есть в очаге воспаления: микробы, разрушенные лейкоциты, поврежденные клетки и ткани организма и т.д. Кроме того, они усиливают синтез ферментов, способствующих образованию фиброзной ткани в очаге воспаления, и тем самым способствуют заживлению раны.

Фагоцит улавливает отдельные сигналы (хемотаксис) и мигрирует в их направлении (хемокинезис). Подвижность лейкоцитов проявляется в присутствии особых веществ (хемоаттрактантов). Хемоаттрактанты взаимодействуют со специфическими рецепторами нейтрофилов. В результате взаимодействия актина миозина осуществляется выдвижение псевдоподий и перемещение фагоцита. Двигаясь таким образом, лейкоцит проникает через стенку капилляра, выходит в ткани и контактирует с фагоцитируемым объектом. Как только лиганд взаимодействует с рецептором, наступает конформация последнего (этого рецептора) и сигнал передается на фермент, связанный с рецептором в единый комплекс. Благодаря чему осуществляется поглощение фагоцитируемого объекта и слияние его с лизосомой. При этом фагоцитируемый объект либо погибает (завершенный фагоцитоз ), либо продолжает жить и развиваться в фагоците (незавершенный фагоцитоз ).

Последняя стадия фагоцитоза – уничтожение лиганда. В момент контакта с фагоцитируемым объектом наступает активация мембранных ферментов (оксидаз), резко усиливаются окислительные процессы внутри фаголизосом, в результате чего наступает гибель бактерий.

Функция нейтрофилов. В крови нейтрофилы находятся всего несколько часов (транзитом из костного мозга в ткани), а свойственные им функции выполняют за пределами сосудистого русла (выход из сосудистого русла происходит в результате хемотаксиса) и только после активации нейтрофилов. Главная функция - фагоцитоз тканевых обломков и уничтожение опсонизированных микроорганизмов (опсонизация – прикрепление к стенке бактериальной клетки антитела или белков комплемента, что позволяет распознавать эту бактерию и фагоцитировать). Фагоцитоз осуществляется в несколько этапов. После предварительного специфического распознавания подлежащего фагоцитозу материала происходит инвагинация мембраны нейтрофила вокруг частицы и образование фагосомы. Далее в результате слияния фагосомы с лизосомами образуется фаголизосома, после чего происходит уничтожение бактерии и разрушение захваченного материала. Для этого в фаголизосому поступают: лизоцим, катепсин, эластаза, лактоферрин, дефензины, катионные белки; миелопероксидаза; супероксид О 2 – и гидроксильный радикал ОН – , образующиеся (наряду с Н 2 О 2) при респираторном взрыве. Респираторный взрыв: нейтрофилы в течение первых секунд после стимуляции резко увеличивают поглощение кислорода и быстро расходуют значительное его количество. Это явление известно как респираторный (кислородный ) взрыв . При этом образуются токсичные для микроорганизмов H 2 O 2 , супероксид O 2 – и гидроксильный радикал ОH – .После единственной вспышки активности нейтрофил погибает. Такие нейтрофилы составляют основной компонент гноя («гнойные» клетки).



Функция базофилов . Активированные базофилы покидают кровоток и в тканях участвуют в аллергических реакциях. Базофилы имеют высокочувствительные поверхностные рецепторы к фрагментам IgE, которые синтезируют плазматические клетки при попадании в организм антигенов. После взаимодействия с иммуноглобулином происходит дегрануляция базофилов. Выделение гистамина и других вазоактивных факторов при дегрануляции и окисление арахидоновой кислоты вызывают развитие аллергической реакции немедленного типа (такие реакции характерны для аллергического ринита, некоторых форм бронхиальной астмы, анафилактического шока).

Макрофаг - дифференцированная форма моноцитов - крупная (около 20 мкм), подвижная клетка системы мононуклеарных фагоцитов. Макрофаги - профессиональные фагоциты , они найдены во всех тканях и органах, это мобильная популяция клеток. Продолжительность жизни макрофагов - месяцы. Макрофаги подразделяют на резидентные и подвижные. Резидентные макрофаги присутствуют в тканях в норме, в отсутствие воспаления. Макрофаги захватывают из крови денатурированные белки, состарившиеся эритроциты (фиксированные макрофаги печени, селезёнки, костного мозга). Макрофаги фагоцитируют обломки клеток и тканевого матрикса. Неспецифический фагоцитоз характерен для альвеолярных макрофагов, захватывающих пылевые частицы различной природы, сажу и т.п. Специфический фагоцитоз происходит при взаимодействии макрофагов с опсонизированной бактерией.

Макрофаг, кроме фагоцитоза, выполняет чрезвычайно важную функцию: это- антигенпредставляющая клетка . К антигенпредставляющим клеткам, кроме макрофагов, относятся отростчатые (дендритные) клетки лимфоузлов и селезёнки, клетки Лангерганса эпидермиса, М‑клетки в лимфатических фолликулах пищеварительного тракта, дендритные эпителиальные клетки вилочковой железы. Эти клетки захватывают, обрабатывают (процессируют) и представляют Аг на своей поверхности T–лимфоцитам–хелперам, что приводит к стимуляции лимфоцитов и запуску иммунных реакций. ИЛ1 из макрофагов активирует Т‑лимфоциты и в меньшей степени - В‑лимфоциты.



Новое на сайте

>

Самое популярное