Домой Запах изо рта Рентгеновский способ. Современные методы рентгенологических исследований

Рентгеновский способ. Современные методы рентгенологических исследований

Рентгеноскопия (просвечивание). Метод визуального изучения изображения на светящемся экране. Предполагает исследование больного в темноте. Врач-рентгенолог предварительно адаптируется к темноте, больной устанавливается за экран.

Изображение на экране позволяет, прежде всего, получить сведения о функции изучаемого органа - его подвижности, соотношении с соседними органами и т.д. Морфологические особенности изучаемого объекта при просвечивании не документируются, заключение только по просвечиванию во многом субъективно, зависит от квалификации рентгенолога.

Лучевая нагрузка при просвечивании довольно велика, поэтому его проводят только по строгим клиническим показаниям. Проводить профилактическое обследование методом просвечивания запрещено. Рентгеноскопия используется для изучения органов грудной клетки, желудочно-кишечного тракта, иногда как предварительный, «нацеливающий» метод при специальных исследованиях сердца, сосудов, желчного пузыря и др.

Рентгеноскопия используется для изучения органов грудной клетки, желудочно-кишечного тракта, иногда как предварительный, «нацеливающий» метод при специальных исследованиях сердца, сосудов, желчного пузыря и др.

В последние десятилетия все шире распространяются усилители рентгеновского изображения (рис. 3.) - УРИ или ЭОП. Это специальные приборы, позволяющие с помощью электронно-оптического преобразования и усиления получать яркое изображение изучаемого объекта на экране телевизионного монитора с малой лучевой нагрузкой пациента. Применяя УРИ, можно проводить рентгеноскопию без темновой адаптации, в незатемненном кабинете и, что самое главное, при этом резко снижается доза облучения больного.

Рентгенография. Метод, основанный на засвечивании фотоэмульсии, содержащей частицы галоидного серебра, рентгеновскими лучами (рис. 4.). Поскольку лучи поглощаются тканями по-разному, в зависимости от так называемой «плотности» объекта, различные участки пленки подвергаются воздействию разного количества энергии излучения. Отсюда разное фотографическое почернение разных точек пленки, лежащее в основе получения изображения.

Если соседние участки снимаемого объекта поглощают лучи неодинаково, говорят о «рентгенологической контрастности».

После облучения пленку необходимо проявить, т.е. восстановить образующиеся в результате воздействия энергии излучения ионы Аg+ до атомов Аg. При проявлении пленка темнеет, появляется изображение. Поскольку при снимке ионизируется только небольшая часть молекул галоидного серебра, оставшиеся молекулы необходимо удалить из эмульсии. Для этого, после проявления, пленку помещают в фиксажный раствор гипосульфита натрия. Галоидное серебро под воздействием гипосульфита переходит в хорошо растворимую соль, поглощаемую фиксажным раствором. Проявление проходит в щелочной среде, фиксирование - в кислой. После тщательной промывки снимок высушивают и маркируют.


Рентгенография - метод, позволяющий документировать состояние снимаемого объекта в данный момент. Однако, недостатками его являются дороговизна (эмульсия содержит крайне дефицитный драгоценный металл), а также затруднения, возникающие при изучении функции исследуемого органа. Облучение больного при снимке несколько меньше, чем при просвечивании.

В ряде случаев рентгенологическая контрастность соседних тканей позволяет получить на снимках их изображение в обычных условиях. Если же соседние ткани поглощают лучи примерно одинаково, приходится прибегать к искусственному контрастированию. Для этого в полость, просвет органа или вокруг него вводится контрастное вещество, которое поглощает лучи либо значительно меньше (газообразные контрастные вещества: воздух, кислород и т.д.), либо значительно больше, чем изучаемый объект. К последним относятся сернокислый барий, применяемый для исследования желудочно-кишечного тракта, и йодистые препараты. В практике употребляют масляные растворы йода (йодолипол, майодил и др.) и водорастворимые органические соединения йода. Водорастворимые контрастные вещества синтезируют исходя из целей исследования для контрастирования просвета сосудов (кардиотраст, урографин, верографин, омнипак и др.), желчных ходов и желчного пузыря (билитраст, йопогност, билигност и др.), мочевыводящей системы (урографин, омнипак и др.). Поскольку при растворении контрастных веществ могут образовываться свободные ионы йода, больные, страдающие повышенной чувствительностью к йоду («йодизм»), не могут исследоваться. Поэтому, в последние годы чаще применяют неионные контрастные вещества, которые даже при введении больших количеств не вызывают осложнений (омнипак, ультравист).

Для улучшения качества изображения при рентгенографии используют отсеивающие решетки, пропускающие только параллельные лучи.

О терминологии. Обычно употребляют термин «рентгенограмма такой-то области». Так, например, «рентгенограмма грудной клетки», или «рентгенограмма области таза», «рентгенограмма области правого коленного сустава» и т.д. Некоторые авторы рекомендуют строить название исследования из латинского названия объекта с добавлением слов «-графия», «-грамма». Так, например, «краниограмма», «артрограмма», «колонограмма» и т.д. В случаях, когда используют газообразные контрастные вещества, т.е. в просвет органа или вокруг него вводят газ, к названию исследования прибавляют слово «пневмо-» («пневмоэнцефалография», «пневмоартрография» и т.п.).

Флюорография. Метод, основанный на фотографической съемке изображения со светящегося экрана в специальной камере. Применяется при массовых профилактических исследованиях населения, а также в диагностических целях. Размер флюорограммы 7´7 см, 10´10 см позволяет получить достаточную информацию о состоянии органов грудной клетки и других органов. Лучевая нагрузка при флюорографии несколько больше, чем при рентгенографии, но меньше, чем при просвечивании.

Томография. При обычном рентге-новском исследовании плоскостное изображение объектов на пленке или на светящемся экране является суммарным за счет теней многих точек, расположенных ближе и дальше от пленки. Так, например, изображение органов грудной полости в прямой проекции - сумма теней, относящихся к переднему отделу грудной клетки, передним и задним отделам легких, задним отделам грудной клетки. Снимок в боковой проекции представляет собой суммарное изображение обоих легких, средостения, боковых отделов правых и левых ребер и т.д.

В ряде случаев такая суммация теней не позволяет детально оценить участок исследуемого объекта, расположенный на определенной глубине, так как его изображение прикрывается тенями выше и ниже (или кпереди и кзади) расположенных объектов.

Выходом из этого является методика послойного исследования - томография.

Сущность томографии заключается в использовании эффекта размазывания всех слоев изучаемого отдела тела, кроме одного, который и изучается.

В томографе рентгеновская трубка и кассета с пленкой во время снимка движутся в противоположных направлениях так, что луч постоянно проходит только через какой-то заданный слой, «размазывая» выше и нижележащие слои. Таким образом можно последовательно изучить всю толщину объекта.

Чем больше угол взаимного оборота трубки и пленки, тем тоньше слой, дающий четкое изображение. В современных томографах этот слой около 0,5 см.

В ряде случаев, наоборот, требуется изображение более толстого слоя. Тогда, уменьшая угол поворота пленки и трубки, получают так называемые зонограммы - томограммы толстого слоя.

Томография - очень часто применяющийся метод исследования, дающий ценную диагностическую информацию. Современные рентгеновские аппараты во всех странах выпускаются с томографическими приставками, что позволяет универсально использовать их как для просвечивания и снимков, так и для томографии.

Компьютерная томография. Разработка и внедрение компьютерной томографии в практику клинической медицины - крупнейшее достижение науки и техники. Ряд зарубежных ученых (Э. Маркотред и др.) считают, что со времени открытия рентгеновских лучей в медицине не было более значительной разработки, чем создание компьютерного томографа.

КТ позволяет изучить положение, форму и структуру различных органов, а также их соотношение с соседними органами и тканями. При исследовании изображение объекта представляется как подобие поперечного среза тела на заданных уровнях.

В основе КТ лежит создание изображения органов и тканей с помощью ЭВМ. В зависимости от вида излучения, которое используется при исследовании, томографы подразделяются на рентгеновский (аксиальный), магнитно-резонансный, эмиссионный (радионуклидный). В настоящее время все шире распространяются рентгеновское (КТ) и магнитно-резонансное (МРТ) томографическое исследование.

Впервые Oldendorf (1961 г.) произвел математическую реконструкцию поперечного изображения черепа, используя в качестве источника излучения 131 йод, Cormack (1963 г.) разработал математический метод реконструкции изображения головного мозга с источником рентгеновского изображения. В 1972 г. Hounsfield в английской фирме ЕМУ построил первый рентгеновский КТ для исследования черепа, а уже в 1974 г. был построен КТ для томографирования всего тела и с этого времени все более широкое распространение компьютерной техники привело к тому, что КТ, а в последние годы и магнитно-резонансная терапия (МРТ) стали обычным методом исследования больных в крупных клиниках.

Современные компьютерные тамографы (КТ) состоят из следующих частей:

1. Стол для сканирования с транспортером для передвижения пациента в горизонтальном положении по сигналу ЭВМ.

2. Кольцеобразный штатив («Гентри») с источником излучения, системами детекторов для сбора, усиления сигнала и передачи информации на ЭВМ.

3. Пульт управления установкой.

4. Компьютер для обработки и хранения информации с дисководом.

5. Телевизионный монитор, фотокамера, магнитофон.

КТ обладает рядом преимуществ перед обычным рентгеновским исследованием, а именно:

1. Высокой чувствительностью, позволяющей различать изображение соседних тканей не в пределах 10–20% разницы в степени поглощения рентгеновых лучей, что необходимо при обычном рентгеновском исследовании, а в пределах 0,5–1%.

2. Дает возможность изучать исследуемый слой ткани без наслоения «размазанных» теней выше и нижележащих тканей, что неизбежно при обычной томографии.

3. Обеспечивает точную количественную информацию о протяженности патологического очага и его соотношении с соседними тканями.

4. Позволяет получить изображение поперечного слоя объекта, что невозможно при обычном рентгеновском исследовании.

Все это можно использовать не только для определения патологического очага, но и для тех или иных мероприятий под контролем КТ, например, для диагностической пункции, внутрисосудистых вмешательств и т.д.

КТ диагностика основана на соотношении показателей плотности или адсорбции соседних тканей. Каждая ткань, в зависимости от ее плотности (основанной на атомной массе составляющих ее элементов), по-разному поглощает, адсорбирует рентгеновские лучи. Для каждой ткани разработан соответствующий коэффициент адсорбции (КА) по шкале. КА воды принят за 0, КА костей, обладающих наибольшей плотностью, за +1000, воздуха - за –1000.

Для усиления контрастности изучаемого объекта с соседними тканями используют методику «усиления», для чего вводят контрастные вещества.

Лучевая нагрузка при рентгеновской КТ соизмерима с таковой при обычном рентгеновском исследовании, а информативность его во много раз выше. Так, на современных томографах даже при максимальном количестве срезов (до 90) находится в пределах нагрузки во время обычного томографического исследования.

Пневмония рентген требует в обязательном порядке. Без этого вида исследования вылечить человека удастся только чудом. Дело в том, что пневмония может быть вызвана различными возбудителями, которые поддаются только специальной терапии. Рентген помогает определить, подходит ли конкретному больному назначенное лечение. Если ситуация усугубляется, методы терапии корректируются.

Методы исследования рентгеном

Выделяют ряд способов исследования с помощью рентгена, их основное отличие - методика фиксирования полученного изображения:

  1. рентгенография - изображение фиксируется на специальной пленке прямым попаданием на нее рентгеновских лучей;
  2. электрорентгенография - картинка передается на специальные пластины, с которых можно перенести ее на бумагу;
  3. рентгеноскопия - метод, позволяющий получить изображение исследуемого органа на флюоресцентном экране;
  4. рентгенотелевизионное исследование - результат выводится на экран телевизора благодаря персональной теле-системе;
  5. флюорография - изображение получается путем фотографирования выведенной картинки на экран на фотопленку маленького формата;
  6. цифровая рентгенография - графическое изображение передается на цифровой носитель.

Более современные методы рентгенографии позволяют получить более качественное графическое изображение анатомических структур, что способствует более точному диагностированию, а значит, назначению правильного лечения.

Чтобы провести рентген некоторых органов человека используется метод искусственного контрастирования. Для этого исследуемый орган получает дозу специального вещества, поглощающего лучи рентгена.

Виды исследований рентгеном

В медицине показания к рентгенографии состоят в диагностики различных заболеваний, уточнения формы данных органов, места их расположения, состояния слизистых оболочек, перистальтики. Выделяют следующие виды рентгенографии:

  1. позвоночника;
  2. грудной клетки;
  3. периферические отделы скелета;
  4. зубов - ортопантомография;
  5. полости матки - метросальпингография ;
  6. молочной железы - маммография ;
  7. желудка и двенадцатиперстной кишки - дуоденография;
  8. желчного пузыря и желчевыводящих путей - холецистография и холеграфия соответственно;
  9. толстой кишки - ирригоскопия.

Показания и противопоказания к проведению исследования

Рентген может назначаться врачом для визуализации внутренних органов человека с целью установления возможных патологий. Существуют следующие показания к рентгенографии:

  1. необходимость установить поражения внутренних органов и скелета;
  2. проверка корректности установки трубок и катетеров;
  3. контроль эффективности и результативности курса терапии.

Как правило в медицинских заведениях, где сделать рентгенографию можно, пациент опрашивается на предмет возможных противопоказаний процедуры.

К ним относятся:

  1. персональная повышенная чувствительность к йоду;
  2. патология щитовидной железы;
  3. травмы почек или печени;
  4. туберкулез в активной форме;
  5. проблемы кардиологической и кровеносной систем;
  6. повышенное коагулирование крови ;
  7. тяжелое состояние пациента;
  8. состояние беременности.

Преимущества и недостатки способа

Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.

Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.

В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.

Регулярно хожу к стоматологу, где постоянно делают рентген полости рта. А у гинеколога без УЗИ не обходится... Насколько опасны эти исследования и для чего нужны?

И. Крысова, Ижевск

Рентген

С одной стороны человека находится источник рентгенов-ского излучения, с другой - фотоплёнка, которая отображает, как лучи проходят через разные ткани и органы.

Когда используется . Для определения переломов костей, заболевания лёгких, в стоматологии и неврологии. Рентген-аппараты используют во время операций на сердце, чтобы в реальном времени контролировать процесс.

Маммография

В её основе - тоже рентген.

Когда используется . Для исследования молочной железы. Есть маммо-графы для скрининга - профилактических осмотров. А диагностические маммографы используют, если уже есть подозрение на рак груди. Такой аппарат может сразу взять образец опухоли, чтобы определить её злокачественность - сделать биопсию. Современные аппараты, имеющие характеристику microdose (микродоза), в 2 раза сокращают уровень облучения.

КТ

Это тоже вид рентгена, но снимки тела делаются с разных ракурсов. Компьютер выдаёт трёхмерные изображения части тела или внутреннего органа. Подробное изображение всего тела можно получить за одну процедуру. Современный спектральный томограф самостоятельно определит типы тканей, покажет их разными цветами.

Когда используется . При травмах - чтобы комплексно оценить степень повреждений. В онкологии - чтобы найти опухоли и метастазы.

УЗИ

Ультразвуковые волны отражаются по-разному мышцами, суставами, сосудами. Компьютер преобразует сигнал в двухмерное или трёхмерное изображение.

Когда используется . Для постановки диагноза в кардиологии, онкологии, акушерстве и гинекологии. Аппарат показывает внутренние органы в реальном времени. Это самый безопасный метод.

МРТ

Создаёт электромагнитное поле, улавливает насыщенность тканей водородом и передаёт эти данные на экран. В отличие от КТ у МРТ нет излучения, но он также делает объёмные картинки в 3D. МРТ хорошо визуализирует мягкие ткани.

Когда используется . Если нужно обследовать головной мозг, позвоночник, брюшную полость, суставы (в том числе под контролем МРТ проводят операции, чтобы не задеть важные участки мозга - например, отвечающие за речь).

Мнения экспертов

Илья Гипп, к. м. н., руководитель направления терапии под контролем МРТ :

Многие из этих аппаратов могут применяться для лечения. Например, к МРТ-аппарату присоединяется специальная установка. Она фокусирует волны ультразвука внутри тела, точечно повышая температуру, и выжигает новообразования - например, миому матки.

Кирилл Шаляев, директор направления крупнейшего голландского производителя медицинской техники :

То, что вчера казалось невозможным, сегодня - реальность. Раньше при КТ вводили препарат, замедляющий работу сердца. Новейшие компьютерные томо-графы делают 4 оборота в секунду - благодаря этому замедлять работу сердца не нужно.

Какие дозы облучения мы получаем*
Действие Доза в мЗв** За какой промежуток времени получим это излучение в природе
Рентгеновский снимок руки 0,001 Менее 1 дня
Рентгеновский снимок руки на самом первом аппарате 1896 г. 1,5 5 месяцев
Флюорография 0,06 30 дней
Маммография 0,6 2 месяца
Маммография с характеристикой MicroDose 0,03 3 дня
КТ исследование всего тела 10 3 года
Год прожить в кирпичном или бетонном доме 0,08 40 дней
Годовая норма от всех природных источников излучения 2,4 1 год
Доза, полученная ликвидаторами последствий аварии на Чернобыльской АС 200 60 лет
Острая лучевая болезнь 1000 300 лет
Эпицентр ядерного взрыва, смерть на месте 50 000 15 тыс. лет
* По данным Philips
** Микрозиверт (мЗв) - единица измерения ионизирующего излучения. Один зиверт - это количество энергии, поглощённое килограммом биологической ткани.

Рентгенология как наука берет свое начало от 8 ноября 1895 г., когда немецкий физик профессор Вильгельм Конрад Рентген открыл лучи, впоследствии названные его именем. Сам Рентген назвал их X-лучами. Это название сохранилось на его родине и в странах запада.

Основные свойства рентгеновских лучей:

    Рентгеновские лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно.

    Они не отклоняются в электромагнитном поле.

    Скорость распространения их равняется скорости света.

    Рентгеновские лучи невидимы, но, поглощаясь некоторыми веществами, они заставляют их светиться. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии.

    Рентгеновские лучи обладают фотохимическим действием. На этом свойстве рентгеновских лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеновских снимков).

    Рентгеновское излучение обладает ионизирующим действием и придает воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновское излучение, как и излучение радиоактивных веществ, называется ионизирующим излучением.

    Важное свойство рентгеновских лучей – их проникающая способность, т.е. способность проходить через тело и предметы. Проникающая способность рентгеновских лучей зависит:

    1. От качества лучей. Чем короче длина рентгеновских лучей (т.е. чем жестче рентгеновское излучение), тем глубже проникают эти лучи и, наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают.

      От объема исследуемого тела: чем толще объект, тем труднее рентгеновские лучи “пробивают” его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновских лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновское излучение и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Объяснение этого явления в том, что в электромагнитных излучениях с очень малой длиной волны, каковыми являются рентгеновские лучи, сосредоточена большая энергия.

    Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки.

Необходимо учитывать еще одно обстоятельство. Рентгеновы лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.

Гамма-лучи обладают такими же свойствами, но эти виды излучений различаются по способу их получения: рентгеновское излучение получают на высоковольтных электрических установках, а гамма-излучение - вследствие распада ядер атомов.

Методы рентгенологического исследования делятся на основные и специальные, частные. К основным методам рентгенологического исследования относятся: рентгенография, рентгеноскопия, электрорентгенография, компьютерная рентгеновская томография.

Рентгеноскопия – просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов и состояний организма в целом, отдельных органов и систем, а также тканей по теневой картине флюоресцирующего экрана.

Преимущества:

    Позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое тенеобразование.

    Возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами.

    Тесное контактирование врача-рентгенолога с больными, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.

Недостатки: сравнительно большая лучевая нагрузка на больного и обслуживающий персонал; малая пропускная способность за рабочее время врача; ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей и т.д. Показания к рентгеноскопии ограничены.

Электронно–оптическое усиление (ЭОУ). Работа электронно–оптического преобразователя (ЭОП) основана на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Яркость свечения экрана усиливается до 7 тыс. раз. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку.

Рентгенография – фотосъемка посредством рентгеновских лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).

Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. Они представляют картон, который пропитывается специальным люминофором (вольфрамо-кислым кальцием), обладающий флюоресцирующим свойством под влиянием рентгеновых лучей. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Очень хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Для отсеивания мягких лучей первичного потока, который может достигнуть пленки, а также вторичного излучения, используются специальные подвижные решетки. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, полосканию в воде, закреплению и тщательной промывке пленки в текучей воде с последующей сушкой. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин. или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Преимущество рентгенографии: устраняет недостатки рентгеноскопии. Недостаток: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.

Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах. Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал. Селеновая пластинка посыпается порошком графита. Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. Электрорентгенография позволяет в 2-3 минуты перенести изображение с пластины на бумагу. На одной пластине можно произвести более 1000 снимков. Преимущество электрорентгенографии:

    Быстрота.

    Экономичность.

Недостаток: недостаточно высокая разрешающая способность при исследовании внутренних органов, более высокая доза излучения, чем при рентгенографии. Метод применяется, в основном, при исследовании костей и суставов в травмопунктах. В последнее время применение этого метода все более ограничивается.

Компьютерная рентгеновская томография (КТ). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.

КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Основой для разработки и создания КТ послужили различные модели математической реконструкции рентгеновского изображения объектов. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей. Если первое поколение КТ имело один детектор, и время для сканирования составляло 5-10 мин, то на томограммах третьего – четвертого поколений при наличии от 512 до 1100 детекторов и ЭВМ большой емкости время для получения одного среза уменьшилось до миллисекунд, что практически позволяет исследовать все органы и ткани, включая сердце и сосуды. В настоящее время применяется спиральная КТ, позволяющая проводить продольную реконструкцию изображения, исследовать быстро протекающие процессы (сократительную функцию сердца).

КТ основана на принципе создания рентгеновского изображения органов и тканей с помощью ЭВМ. В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, который из ЭВМ подается на телемонитор. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением. Современные установки позволяют получить срезы толщиной от 2 до 8 мм. Рентгеновская трубка и приемник излучения движутся вокруг тела больного. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:

    Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .

    КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.

    КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.

    КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.

    КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

    КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).

Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определение рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (HU) по шкале Хаунсфилда. Согласно этой шкале,HUводы принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, обладающий наименьшей плотностью, – за -1000.

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, что HUпораженной ткани отличается от такового здоровой на 10 - 15 ед.

Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.

Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.

Такие методы рентгенологического исследования называются специальными. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как и органы брюшной полости, например. Необходимость изучения рентгеновыми лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, различную от плотности органа и окружающей его среды.

Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.

Контрастные вещества, которые интенсивно поглощают рентгеновские лучи (позитивные рентгеноконтрастные средства) это:

    Взвеси солей тяжелых металлов – сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).

    Водные растворы органических соединений йода – урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.

    Масляные растворы органических соединений йода – йодолипол и др., которые вводятся в свищи и лимфатические сосуды.

Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.

Рентгенонегативные или отрицательные контрастные вещества – воздух, газы “не поглощают” рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.

Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:

    Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.

    Введение контрастных веществ вокруг исследуемых органов – ретропневмоперитонеум, пневморен, пневмомедиастинография.

    Введение контрастных веществ в полость и вокруг исследуемых органов. Сюда относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа. Обычно проводят париетографию пищевода, желудка и толстой кишки.

    Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять его на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.

Побочное действие РКС. Реакции организма на введение РКС наблюдаются примерно в 10% случаев. По характеру и степени тяжести они делятся на 3 группы:

    Осложнения, связанные с проявлением токсического действия на различные органы с функциональными и морфологическими поражениями их.

    Нервно-сосудистая реакция сопровождается субъективными ощущениями (тошнота, ощущение жара, общая слабость). Объективные симптомы при этом – рвота, понижение артериального давления.

    Индивидуальная непереносимость РКС с характерными симптомами:

    1. Со стороны центральной нервной системы – головные боли, головокружение, возбуждение, беспокойство, чувство страха, возникновение судорожных припадков, отек головного мозга.

      Кожные реакции – крапивница, экзема, зуд и др.

      Симптомы, связанные с нарушением деятельности сердечно-сосудистой системы – бледность кожных покровов, неприятные ощущения в области сердца, падение артериального давления, пароксизмальная тахи- или брадикардия, коллапс.

      Симптомы, связанные с нарушением дыхания – тахипноэ, диспноэ, приступ бронхиальной астмы, отек гортани, отек легких.

Реакции непереносимости РКС иногда носят необратимый характер и приводят к летальному исходу.

Механизмы развития системных реакций во всех случаях имеют сходный характер и обусловлены активацией системы комплемента под воздействием РКС, влиянием РКС на свертывающую систему крови, высвобождения гистамина и других биологически активных веществ, истинной иммунной реакцией или сочетанием этих процессов.

В легких случаях побочных реакций достаточно прекратить инъекцию РКС и все явления, как правило, проходят без терапии.

При тяжелых осложнениях необходимо немедленно вызвать реанимационную бригаду, а до ее прибытия ввести 0,5 мл адреналина, внутривенно 30 – 60 мг преднизолона или гидрокортизона, 1 – 2 мл раствора антигистаминного препарата (димедрол, супрастин, пипольфен, кларитин, гисманал), внутривенно 10% хлористый кальций. При отеке гортани произвести интубацию трахеи, а при невозможности ее проведения – трахеостомию. При остановке сердца немедленно приступить к искусственному дыханию и непрямому массажу сердца, не дожидаясь прибытия реанимационной бригады.

Для профилактики побочного действия РКС накануне проведения рентгеноконтрастного исследования применяют премедикацию антигистаминными и глюкокортикоидными препаратами, а также проводят один из тестов для прогнозирования повышенной чувствительности больного к РКС. Наиболее оптимальными тестами являются: определение высвобождения гистамина из базофилов периферической крови при смешивании ее с РКС; содержания общего комплемента в сыворотке крови больных, назначенных для проведения рентгеноконтрастного обследования; отбор больных для премедикации путем определения уровней сывороточных иммуноглобулинов.

Среди более редких осложнений могут иметь место «водное» отравление при ирригоскопии у детей с мегаколон и газовая (либо жировая) эмболия сосудов.

Признаком «водного» отравления, когда быстро всасывается через стенки кишки в кровеносное русло большое количество воды и наступает дисбаланс электролитов и белков плазмы, могут быть тахикардия, цианоз, рвота, нарушение дыхания с остановкой сердца; может наступить смерть. Первая помощь при этом – внутривенное введение цельной крови или плазмы. Профилактикой осложнения является проведение ирригоскопии у детей взвесью бария в изотоническом растворе соли, вместо водной взвеси.

Признаками эмболии сосудов являются: появление ощущения стеснения в груди, одышка, цианоз, урежение пульса и падение артериального давления, судороги, прекращение дыхания. При этом следует немедленно прекратить введение РКС, уложить больного в положение Тренделенбурга, приступить к искусственному дыханию и непрямому массажу сердца, ввести внутривенно 0,1% - 0,5 мл раствора адреналина и вызвать реанимационную бригаду для возможной интубации трахеи, осуществления аппаратного искусственного дыхания и проведения дальнейших лечебных мероприятий.



Новое на сайте

>

Самое популярное