Домой Ортопедия Арифметические действия с рациональными числами. Основные свойства действий с рациональными числами (методическая разработка)

Арифметические действия с рациональными числами. Основные свойства действий с рациональными числами (методическая разработка)

То а + b = b + a, а+(b + с) = (а + b) + с.

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю.

Значит, для любого рационального числа имеем: а + 0 = а, а + (- а)=0.

Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами. Другими словами, если а, b и с - любые рациональные числа, то ab - ba, a(bc) - (ab)c.

Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1.

Значит, для любого рационального числа а имеем:

а) x + 8 - х - 22; в) a-m + 7-8+m;
б) -х-а + 12+а -12; г) 6,1 -k + 2,8 + p - 8,8 + k - р.

1190. Выбрав удобный порядок вычислений, найдите значение выражения:

1191. Сформулируйте словами переместительное свойство умножения ab = ba и проверьте его при:

1192. Сформулируйте словами сочетательное свойство умножения a(bc)=(ab)c и проверьте его при:

1193. Выбирая удобный порядок вычислений, найдите значение выражения:


1194. Какое получится число (положительное или отрицательное), если перемножить:

а) одно отрицательное число и два положительных числа;
б) два отрицательных и одно положительное число;
в) 7 отрицательных и несколько положительных чисел;
г) 20 отрицательных и несколько положительных? Сделайте вывод.

1195. Определите знак произведения:

а) - 2 (- 3) (- 9) (-1,3) 14 (- 2,7) (- 2,9);
б) 4 (-11) (-12) (-13) (-15) (-17) 80 90.

а) В спортивном зале собрались Витя, Коля, Петя, Сережа и Максим (рис. 91, а). Оказалось, что каждый из мальчиков знаком только с двумя другими. Кто с кем знаком? (Ребро графа означает «мы знакомы».)

б) Во дворе гуляют братья и сестры одной семьи. Кто из этих детей мальчики, а кто девочки (рис. 91, б)? (Пунктирные ребра графа означают - "я - сестра", а сплошные - "я - брат".)

1205. Вычислите:

1206. Сравните:

а) 2 3 и 3 2 ; б) (-2) 3 и (-3) 2 ; в) 1 3 и 1 2 ; г) (-1) 3 и (-1) 2 .

1207. Округлите 5,2853 до тысячных; до сотых ; до десятых; до единиц.

1208. Решите задачу:

1) Мотоциклист догоняет велосипедиста. Сейчас между ними 23,4 км. Скорость мотоциклиста в 3,6 раза больше скорости велосипедиста. Найдите скорости велосипедиста и мотоциклиста, если известно, что мотоциклист догонит велосипедиста через ч.
2) Легковая автомашина догоняет автобус. Сейчас между ними 18 км. Скорость автобуса составляет скорости легковой автомашины. Найдите скорости автобуса и легковой автомашины, если известно, что легковая автомашина догонит автобус через ч.

1209. Найдите значение выражения:

1) (0,7245:0,23 - 2,45) 0,18 + 0,07 4;
2) (0,8925:0,17 - 4,65) 0,17+0,098;
3) (-2,8 + 3,7 -4,8) 1,5:0,9;
4) (5,7-6,6-1,9) 2,1:(-0,49).

Проверьте ваши вычисления с помощью микрокалькулятора .
1210. Выбрав удобный порядок вычислений, найдите значение выражения:

1211. Упростите выражение:

1212. Найдите значение выражения:

1213. Выполните действия:

1214. Ученикам дали задание собрать 2,5 т металлолома. Они собрали 3,2 т металлолома. На сколько процентов учащиеся выполнили задание и на сколько процентов они перевыполнили задание?

1215. Автомашина прошла 240 км. Из них 180 км она шла по проселочной дороге, а остальной путь - по шоссе. Расход бензина на каждые 10 км проселочной дороги составил 1,6 л, а по шоссе - на 25% меньше. Сколько литров бензина в среднем расходовалось на каждые 10 км пути?

1216. Выезжая из села, велосипедист заметил на мосту пешехода, идущего в том же направлении, и догнал его через 12 мин. Найдите скорость пешехода, если скорость велосипедиста 15 км/ч, а расстояние от села до моста 1 км 800 м?

1217. Выполните действия:

а) - 4,8 3,7 - 2,9 8,7 - 2,6 5,3 + 6,2 1,9;
б) -14,31:5,3 - 27,81:2,7 + 2,565:3,42+4,1 0,8;
в) 3,5 0,23 - 3,5 (- 0,64) + 0,87 (- 2,5).

С рациональными числами люди, как вы знаете, знакомились постепенно. Вначале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяющем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа-урапун» (три), «оказа-оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много».

Ученые полагают, что слово для обозначения сотни появилось более 7000 лет назад, для обозначения тысячи - 6000 лет назад, а 5000 лет тому назад в Древнем Египте и в Древнем Вавилоне появляются названия для громадных чисел - до миллиона. Но долгое время натуральный ряд чисел считался конечным: люди думали, что существует самое большое число.

Величайший древнегреческий математик и физик Архимед (287-212 гг. до н. э.) придумал способ описания громадных чисел. Самое большое число, которое умел называть Архимед, было настолько велико, что для его цифровой записи понадобилась бы лента в две тысячи раз длиннее, чем расстояние от Земли до Солнца.

Но записывать такие громадные числа еще не умели. Это стало возможным только после того, как индийскими математиками в VI в. была придумана цифра нуль и ею стали обозначать отсутствие единиц в разрядах десятичной записи числа.

При разделе добычи и в дальнейшем при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести «ломаные числа» - обыкновенные дроби. Действия над дробями еще в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби».

Чтобы облегчить действия с дробями, были придуманы десятичные дроби . В Европе их ввел в Х585 г. голландский математик и инженер Симон Стевин.

Отрицательные числа появились позднее, чем дроби. Долгое время такие числа считали «несуществующими», «ложными» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество - долг» приводило к недоумениям: можно сложить или вычесть «имущества» или «долги», но как понимать произведение или частное «имущества» и «долга»?

Однако несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим математиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычитаемое; вычитаемое на вычитаемое дает прибавляемое» и т. д.), а позже индийский математик Б х а с к а р а (XII в.) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение имущества и долга есть долг». То же правило и при делении).

Было установлено, что свойства действий над отрицательными числами те же, что и над положительными (например, сложение и умножение обладают переместительным свойством). И наконец с начала прошлого века отрицательные числа стали равоправными с положительными.

В дальнейшем в математике появились новые числа - иррациональные, комплексные и другие. О них вы узнаете в старших классах.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Книги и учебники согласно календарному плануванння по математике 6 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Понятие о числах относится к абстракциям, характеризующим объект с количественной точки зрения. Еще в первобытном обществе у людей возникла потребность в счете предметов, поэтому появились численные обозначения. В дальнейшем они стали основой математики как науки.

Чтобы оперировать математическими понятиями, необходимо, прежде всего, представлять, какие же бывают числа. Основных видов чисел несколько. Это:

1. Натуральные - те, которые мы получаем при нумерации предметов (их естественном счете). Их множество обозначают N.

2. Целые (их множество обозначается буквой Z). Сюда относятся натуральные, противоположные им целые отрицательные числа и нуль.

3. Рациональные числа (буква Q). Это те, которые возможно представить в виде дроби, числитель которой равняется целому числу, а знаменатель - натуральному. Все целые и относятся к рациональным.

4. Действительные (их обозначают буквой R). Они включают в себя рациональные и иррациональные числа. Иррациональными называются числа, полученные из рациональных путем различных операций (вычисление логарифма, извлечение корня), сами не являющиеся рациональными.

Таким образом, любое из перечисленных множеств является подмножеством нижеперечисленного. Иллюстрацией данного тезиса служит диаграмма в виде т. н. кругов Эйлера. Рисунок представляет собой несколько концентрических овалов, каждый из которых расположен внутри другого. Внутренний, самый малый по размеру овал (область) обозначает множество натуральных чисел. Его полностью охватывает и включает в себя область, символизирующая множество целых чисел, которая, в свою очередь, заключена внутри области рациональных чисел. Внешний, самый большой овал, включающий в себя все остальные, обозначает массив

В данной статье мы рассмотрим множество рациональных чисел, их свойства и особенности. Как уже упоминалось, к ним принадлежат все существующие числа (положительные, а также отрицательные и нуль). Рациональные числа составляют бесконечный ряд, имеющий следующие свойства:

Данное множество упорядочено, то есть, взяв любую пару чисел из этого ряда, мы всегда можем узнать, какое из них больше;

Взяв любую пару таких чисел, мы всегда можем поместить между ними как минимум еще одно, а, следовательно, и целый ряд таковых - таким образом, рациональные числа представляют собой бесконечный ряд;

Все четыре арифметических действия над такими числами возможны, результатом их всегда является определенное число (также рациональное); исключение составляет деление на 0 (нуль) - оно невозможно;

Любые рациональные числа могут быть представлены в виде десятичных дробей. Эти дроби могут быть либо конечными, либо бесконечными периодическими.

Чтобы сравнить два числа, относящихся к множеству рациональных, необходимо помнить:

Любое положительное число больше нуля;

Любое отрицательное число всегда меньше нуля;

При сравнении двух отрицательных рациональных чисел больше то из них, чья абсолютная величина (модуль) меньше.

Как производятся действия с рациональными числами?

Чтобы сложить два таких числа, имеющих одинаковый знак, нужно сложить их абсолютные величины и поставить перед суммой общий знак. Для сложения чисел с разными знаками следует из большего значения вычесть меньшее и поставить знак того из них, чье абсолютное значение больше.

Для вычитания одного рационального числа из другого достаточно к первому числу прибавить противоположное второму. Для умножения двух чисел нужно перемножить значения их абсолютных величин. Полученный результат будет положительным, если сомножители имеют один и тот же знак, и отрицательным, если разные.

Деление производится аналогично, то есть находится частное абсолютных величин, а перед результатом ставится знак «+» в случае совпадения знаков делимого и делителя и знак «-» в случае их несовпадения.

Степени рациональных чисел выглядят как произведения нескольких сомножителей, равных между собой.


В этой статье дан обзор свойств действий с рациональными числами . Сначала озвучены основные свойства, на которых базируются все остальные свойства. После этого даны некоторые другие часто используемые свойства действий с рациональными числами.

Навигация по странице.

Перечислим основные свойства действий с рациональными числами (a , b и c – произвольные рациональные числа):

  • Переместительное свойство сложения a+b=b+a .
  • Сочетательное свойство сложения (a+b)+c=a+(b+c) .
  • Существование нейтрального элемента по сложению – нуля, сложение которого с любым числом не изменяет это число, то есть, a+0=a .
  • Для каждого рационального числа a существует противоположное число −a такое, что a+(−a)=0 .
  • Переместительное свойство умножения рациональных чисел a·b=b·a .
  • Сочетательное свойство умножения (a·b)·c=a·(b·c) .
  • Существование нейтрального элемента по умножению – единицы, умножение на которую любого числа не изменяет это число, то есть, a·1=a.
  • Для каждого отличного от нуля рационального числа a существует обратное число a −1 такое, что a·a −1 =1 .
  • Наконец, сложение и умножение рациональных чисел связаны распределительным свойством умножения относительно сложения: a·(b+c)=a·b+a·c .

Перечисленные свойства действий с рациональными числами являются основными, так как все остальные свойства могут быть получены из них.

Другие важные свойства

Помимо девяти перечисленных основных свойств действий с рациональными числами существует еще ряд очень широко используемых свойств. Дадим их краткий обзор.

Начнем со свойства, которое с помощью букв записывается как a·(−b)=−(a·b) или в силу переместительного свойства умножения как (−a)·b=−(a·b) . Из этого свойства напрямую следует правило умножения рациональных чисел с разными знаками , в указанной статье приведено и его доказательство. Указанное свойство объясняет правило «плюс умножить на минус есть минус, и минус умножить на плюс есть минус».

Вот следующее свойство: (−a)·(−b)=a·b . Из него следует правило умножения отрицательных рациональных чисел , в этой статье Вы найдете и доказательство приведенного равенства. Этому свойству отвечает правило умножения «минус умножить на минус есть плюс».

Несомненно, стоит остановиться на умножении произвольного рационального числа a на нуль: a·0=0 или 0·a=0 . Докажем это свойство. Мы знаем, что 0=d+(−d) для любого рационального d , тогда a·0=a·(d+(−d)) . Распределительное свойство позволяет полученное выражение переписать как a·d+a·(−d) , а так как a·(−d)=−(a·d) , то a·d+a·(−d)=a·d+(−(a·d)) . Так мы пришли к сумме двух противоположных чисел, равных a·d и −(a·d) , их сумма дает нуль, что и доказывает равенство a·0=0 .

Легко заметить, что выше мы перечислили только свойства сложения и умножения, при этом ни слова не сказали о свойствах вычитания и деления. Это связано с тем, что на множестве рациональных чисел действия вычитание и деление задаются как обратные к сложению и умножению соответственно. То есть, разность a−b – это есть сумма a+(−b) , а частное a:b – это есть произведение a·b −1 (b≠0 ).

Учитывая эти определения вычитания и деления, а также основные свойства сложения и умножения, можно доказать любые свойства действий с рациональными числами.

Для примера докажем распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c . Имеет место следующая цепочка равенств a·(b−c)=a·(b+(−c))= a·b+a·(−c)=a·b+(−(a·c))=a·b−a·c , которая и является доказательством.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.

Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.

В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа .

Навигация по уроку:

Пример 1. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:

Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .

Некоторые примитивные действия, такие как: заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:

Пример 2. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:

Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:

Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.

Пример 3. Найти значение выражения:

В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том, как это сделать. Если испытываете трудности, обязательно повторите урок .

После приведения дробей к общему знаменателю выражение примет следующий вид:

Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Запишем решение данного примера покороче:

Пример 4. Найти значение выражения

Вычислим данное выражение в следующем : слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .

Первое действие:

Второе действие:

Пример 5 . Найти значение выражения:

Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Получили ответ .

Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.

Итак, вернёмся к изначальному выражению:

Заключим каждое число в скобки. Для этого смешанное число временно :

Вычислим целые части:

(−1) + (+2) = 1

В главном выражении вместо (−1) + (+2) запишем полученную единицу:

Полученное выражение . Для этого запишем единицу и дробь вместе:

Запишем решение этим способом покороче:

Пример 6. Найти значение выражения

Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Запишем решение данного примера покороче:

Пример 7. Найти значение выражение

Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:

Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно .

Решим данный пример вторым способом. Вернемся к изначальному выражению:

Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:

Заключим каждое рациональное число в скобки вместе своими знаками:

Вычислим целые части:

В главном выражении вместо запишем полученное число −7

Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:

Запишем это решение покороче:

Пример 8. Найти значение выражения

Заключим каждое рациональное число в скобки вместе своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и

Запишем это решение покороче:

Пример 9. Найти выражения выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.

В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:

Обратите внимание, что дробные части были приведены к общему знаменателю.

Пример 10. Найти значение выражения

Заменим вычитание сложением:

В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:

Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:

Пример 11. Найти значение выражения

Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Пример 12. Найти значение выражения

Выражение состоит из нескольких рациональных чисел. Согласно , в первую очередь необходимо выполнить действия в скобках.

Сначала вычислим выражение , затем выражение Полученные результаты слóжим.

Первое действие:

Второе действие:

Третье действие:

Ответ: значение выражения равно

Пример 13. Найти значение выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:

Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заменим вычитание сложением:

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Таким образом, значение выражения равно

Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.

Пример 14. Найти значение выражения −3,2 + 4,3

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:

(−3,2) + (+4,3)

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:

(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1

Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2

Таким образом, значение выражения −3,2 + (+4,3) равно 1,1

−3,2 + (+4,3) = 1,1

Пример 15. Найти значение выражения 3,5 + (−8,3)

Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:

3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8

Таким образом, значение выражения 3,5 + (−8,3) равно −4,8

Этот пример можно записать покороче:

3,5 + (−8,3) = −4,8

Пример 16. Найти значение выражения −7,2 + (−3,11)

Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.

Запись с модулями можно пропустить, чтобы не загромождать выражение:

−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31

Таким образом, значение выражения −7,2 + (−3,11) равно −10,31

Этот пример можно записать покороче:

−7,2 + (−3,11) = −10,31

Пример 17. Найти значение выражения −0,48 + (−2,7)

Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:

−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18

Пример 18. Найти значение выражения −4,9 − 5,9

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:

(−4,9) − (+5,9)

Заменим вычитание сложением:

(−4,9) + (−5,9)

Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:

(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8

Таким образом, значение выражения −4,9 − 5,9 равно −10,8

−4,9 − 5,9 = −10,8

Пример 19. Найти значение выражения 7 − 9,3

Заключим в скобки каждое число вместе со своими знаками

(+7) − (+9,3)

Заменим вычитание сложением

(+7) + (−9,3)

(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3

Таким образом, значение выражения 7 − 9,3 равно −2,3

Запишем решение этого примера покороче:

7 − 9,3 = −2,3

Пример 20. Найти значение выражения −0,25 − (−1,2)

Заменим вычитание сложением:

−0,25 + (+1,2)

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:

−0,25 + (+1,2) = 1,2 − 0,25 = 0,95

Запишем решение этого примера покороче:

−0,25 − (−1,2) = 0,95

Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)

Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5

Первое действие:

4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0

Второе действие:

−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5

Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.

Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)

Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:

Первое действие:

3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6

Второе действие:

3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4

Третье действие

0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6

Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.

Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15

Заключим в скобки каждое рациональное число вместе со своими знаками

(−3,8) + (+17,15) − (+6,2) − (+6,15)

Заменим вычитание сложением там, где это можно:

(−3,8) + (+17,15) + (−6,2) + (−6,15)

Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.

Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:

Первое действие:

(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35

Второе действие:

13,35 + (−6,2) = 13,35 − −6,20 = 7,15

Третье действие:

7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1

Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.

Пример 24. Найти значение выражения

Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:



Новое на сайте

>

Самое популярное