Домой Пульпит Рекордсмен на быстрых нейтронах. Реакторы на быстрых нейтронах — вот надежда человечества

Рекордсмен на быстрых нейтронах. Реакторы на быстрых нейтронах — вот надежда человечества

Нейтроны?

Нейтроны — это частицы, входящие в состав большинства атомных ядер наряду с протонами. В ходе реакции ядерного распада ядро урана делится на две части и вдобавок испускает несколько нейтронов. Они могут попасть в другие атомы и спровоцировать еще одну или несколько реакций деления. Если каждый выпущенный при распаде ядер урана нейтрон будет попадать в соседние атомы, то начнется лавинообразная цепочка реакций с выделением все большей и большей энергии. При отсутствии сдерживающих факторов произойдет ядерный взрыв.

Но в ядерном реакторе часть нейтронов либо выходит наружу, либо поглощается специальными поглотителями. Поэтому число реакций деления все время остается одним и тем же, ровно таким, какое необходимо для получения энергии. Энергия реакции радиоактивного распада дает тепло, которое затем используется для получения крутящего турбины электростанции пара.

Нейтроны, которые поддерживают ядерную реакцию на постоянном уровне, могут иметь разную энергию. В зависимости от энергии их называют либо тепловыми, либо быстрыми (есть еще холодные, но те для АЭС не годятся). Большинство реакторов в мире основаны на использовании тепловых нейтронов, а вот на Белоярской АЭС стоит реактор на быстрых. Почему?

В чем преимущества?

В реакторе на быстрых нейтронах часть энергии нейтронов идет, как и в обычных реакторах, на поддержание реакции деления основного компонента ядерного топлива, урана-235. А еще часть энергии поглощается оболочкой, сделанной из урана-238 или тория-232. Эти элементы для обычных реакторов бесполезны. Когда в их ядра попадают нейтроны, они превращаются в изотопы, пригодные для использования в ядерной энергетике в качестве топлива: плутоний-239 или уран-233.

Обогащенный уран. В отличие от отработанного ядерного топлива уран далеко не столь радиоактивен, чтобы с ним приходилось работать только при помощи роботов. Его даже можно ненадолго брать руками в плотных перчатках. Фото: Департамент энергетики США


Таким образом, реакторы на быстрых нейтронах можно использовать не только для энергоснабжения городов и заводов, но и для получения нового ядерного топлива из сравнительно недорого сырья. В пользу экономической выгоды говорят такие факты: килограмм выплавленного из руды урана стоит около полусотни долларов, содержит всего два грамма урана-235, а остальное приходится на уран-238.

Однако реакторы на быстрых нейтронах в мире практически не используются. БН-600 можно считать уникальным. Ни японский «Мондзю», ни французский «Феникс», ни ряд экспериментальных реакторов США и Великобритании сейчас не работают: реакторы на тепловых нейтронах оказались проще в сооружении и эксплуатации. На пути к реакторам, которые смогут сочетать производство энергии с производством ядерного топлива, стоит ряд препятствий. И как минимум часть препятствий конструкторы БН-600, судя по его успешной эксплуатации в течение 35 лет, смогли обойти.

В чем проблема?

В натрии. В любом ядерном реакторе обязательно должно быть несколько узлов и элементов: тепловыделяющие сборки с ядерным топливом, элементы для управления ядерной реакцией и теплоноситель, который забирает выделяющееся в устройстве тепло. Конструкция этих узлов, состав топлива и теплоносителя могут отличаться, но без них реактор невозможен по определению.

В реакторе на быстрых нейтронах в качестве теплоносителя нужно использовать материал, который не задерживает нейтроны, иначе они из быстрых станут медленными, тепловыми. На заре атомной энергетики конструкторы попробовали использовать ртуть, но она растворила трубы внутри реактора и начала протекать наружу. Нагретый ядовитый металл, который к тому же стал под действием облучения радиоактивным, причинил так много хлопот, что проект ртутного реактора быстро закрыли.

Кусочки натрия хранят обычно под слоем керосина. Эта жидкость хоть и горюча, с натрием не реагирует и не пускает к нему пары воды из воздуха. Фото: Superplus / Wikipedia


В БН-600 используется жидкий натрий. На первый взгляд, натрий немногим лучше ртути: он чрезвычайно активен химически, бурно реагирует с водой (проще говоря, взрывается, если кинуть в воду) и вступает в реакцию даже с входящими в состав бетона веществами. Однако он не мешает нейтронам, а при должном уровне строительных работ и последующего техобслуживания риск утечки не так уж велик. Кроме того, натрий, в отличие от водяного пара, можно перекачивать при нормальном давлении. Струя пара из прорвавшегося паропровода под давлением в сотни атмосфер режет металл, так что в этом смысле натрий безопаснее. А что касается химической активности, то и ее можно обратить во благо. В случае аварии натрий реагирует не только с бетоном, но и с радиоактивным йодом. Йодид натрия уже не покидает пределы здания АЭС, в то время как на газообразный йод пришлась едва ли не половина выбросов при аварии на АЭС в Фукусиме.

Советские инженеры, разрабатывавшие реакторы на быстрых нейтронах, сначала построили опытный БР-2 (тот самый неудачный, ртутный), а потом экспериментальные же БР-5 и БОР-60 с натрием вместо ртути. Полученные на них данные позволили спроектировать первый промышленный «быстрый» реактор БН-350, который использовался на уникальном атомном химико-энергетическом комбинате — АЭС, совмещенной с опреснителем морской воды. На Белоярской АЭС построили уже второй по счету реактор типа БН — «быстрый, натриевый».

Несмотря на накопленный к моменту запуска БН-600 опыт, первые годы были омрачены серией утечек жидкого натрия. Ни одно из этих происшествий не несло радиационной угрозы для населения и не приводило к серьезному облучению персонала станции, а с начала 1990-х годов утечки натрия вовсе прекратились. Для помещения этого в мировой контекст отметим, что на японском «Мондзю» в 1995 произошла серьезная утечка жидкого натрия, которая привела к пожару и остановке станции на 15 лет. Воплотить идею реактора на быстрых нейтронах в промышленном, а не экспериментальном устройстве удалось только советским конструкторам, опыт которых позволил российским атомщикам разработать и построить реактор следующего поколения — БН-800.

БН-800 уже построен. 27 июня 2014 года реактор заработал на минимальной мощности, а в 2015 году ожидается и энергетический пуск. Поскольку запуск ядерного реактора представляет собой весьма сложный процесс, специалисты разделяют физический пуск (начало самоподдерживающейся цепной реакции) и энергетический пуск, при котором энергоблок начинает выдавать в сеть первые мегаватты электроэнергии.

Белоярская АЭС, пульт управления. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru


В БН-800 конструкторы воплотили ряд важных усовершенствований, включая, к примеру, аварийную систему воздушного охлаждения реактора. Ее достоинством разработчики называют независимость от источников энергии. Если, как на Фукусиме, на АЭС исчезнет электричество, то охлаждающий реактор поток все равно не исчезнет — циркуляция будет поддерживаться естественным путем, за счет конвекции, поднятия вверх нагретого воздуха. А если вдруг произойдет расплавление активной зоны, то радиоактивный расплав уйдет не вовне, а в специальную ловушку. Наконец, защитой от перегрева выступает большой запас натрия, который в случае аварии может принять выделяемое тепло даже при полном отказе всех систем охлаждения.

Вслед за БН-800 предполагается построить и реактор БН-1200, еще большей мощности. Разработчики рассчитывают, что их детище станет серийным реактором и будет применяться не только на Белоярской АЭС, но и на других станциях. Впрочем, пока это планы — для крупномасштабного перехода на реакторы на быстрых нейтронах еще предстоит решить ряд проблем.

Белоярская АЭС, строительная площадка нового энергоблока. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru


В чем проблема?

В экономике и экологии топлива. Реакторы на быстрых нейтронах работают на смеси обогащенной окиси урана и окиси плутония — это так называемое мокс-топливо. Теоретически оно может быть дешевле обычного в силу того, что использует плутоний или уран-233 из облученного в других реакторах недорогого урана-238 или тория, но пока мокс-топливо проигрывает в цене обычному. Получается своего рода замкнутый круг, который не так просто разорвать: нужно отладить и технологию постройки реакторов, и извлечение плутония с ураном из облученного в реакторе материала, и обеспечить контроль за нераспространением высокоактивных материалов. Некоторые экологи, к примеру представители некоммерческого центра «Беллона» , указывают на большой объем получаемых при переработке облученного материала отходов, ведь наряду с ценными изотопами в реакторе на быстрых нейтронах образуется значительное количество радионуклидов, которые нужно где-то захоранивать.

Иными словами, даже успешная эксплуатация реактора на быстрых нейтронах сама по себе еще не гарантирует революции в атомной энергетике. Она является необходимым, но не достаточным условием для того, чтобы все-таки перейти с ограниченных запасов урана-235 на куда более доступные уран-238 и торий-232. Смогут ли технологи, занятые процессами переработки ядерного топлива и утилизацией ядерных отходов, справиться со своими задачами — тема для отдельного рассказа.

Атомной энергетике всегда уделялось повышенное внимание из-за ее перспективности. В мире около двадцати процентов электроэнергии получают при помощи атомных реакторов, а в развитых странах этот показатель продукта атомной энергетики еще выше – больше трети от всего электричества. Однако, основным видом реакторов остаются тепловые, типа LWR и ВВЭР. Ученые считают, что одной из основных проблем этих реакторов в ближайшее время будет нехватка природного топлива, урана, его изотопа 238, необходимого для проведения цепной реакции деления. Исходя из возможного истощения ресурсов этого естественного материала топлива для тепловых реакторов, на развитие атомной энергетики накладываются ограничения. Более перспективным считается применение ядерных реакторов с использованием быстрых нейтронов, при котором возможно воспроизводство топлива.

История разработки

Исходя из программы Министерства атомной промышленности РФ в начале века были поставлены задачи по созданию и обеспечению безопасной работы ядерных комплексов энергетики, модернизированных АЭС нового типа. Одним из таких объектов стала Белоярская атомная электростанция, расположенная в 50-и километрах под Свердловском (Екатеринбург) Решение о ее создании принято в 1957 году, а в 1964 – запущен в работу первый блок.

В двух ее блоках работали тепловые ядерные реакторы, которые к 80-90 годам прошлого века исчерпали свой ресурс. На третьем блоке впервые в мире был апробирован реактор на быстрых нейтронах БН-600. За время его работы были получены планируемые разработчиками результаты. На высоте оказалась и безопасность процесса. В течение проектного срока, а он закончился в 2010 году, не произошло никаких серьезных нарушений и отклонений. Окончательный срок его работы истекает к 2025 году. Уже сейчас можно сказать, что ядерные реакторы на быстрых нейтронах, к которым относятся БН-600 и его преемник, БН-800, имеют большое будущее.

Запуск нового БН-800

Ученые ОКБМ им. Африкантова из Горького (нынешний Нижний Новгород) подготовили проект четвертого энергоблока Белоярской АЭС еще в 1983 году. В связи с аварией, произошедшей в Чернобыле в 1987 и введения новых нормативов безопасности в 1993 работы были прекращены и запуск отложен на неопределенное время. Только в 1997 году после получения лицензии на возведение блока №4 с реактором БН-800 мощностью 880 МВт от Госатомнадзора процесс возобновился.

25-го декабря 2013 началось разогревание реактора для дальнейшего вхождения теплоносителя. В июне четырнадцатого, как и намечалось по плану, произошел выход на массу, достаточную для проведения минимальной цепной реакции. Дальше дело застопорилось. МОКС-топливо, состоящее из делящихся оксидов урана и плутония, аналогичное тому, что применялось в энергоблоке №3, и не было готово. Именно его хотели использовать разработчики в новом реакторе. Пришлось комбинировать, искать новые варианты. В результате, чтобы не переносить запуск энергоблока, решили применять в части сборки урановое топливо. Запуск ядерного реактора БН-800 и блока №4 состоялся 10 декабря 2015.

Описание процесса

Во время работы в реакторе с быстрыми нейтронами происходит образование, вследствие реакции деления, вторичных элементов, которые при процессе поглощения урановой массой образуют вновь созданный ядерный материал плутоний-239, способный продолжать процесс дальнейшего деления. Главным достоинством этой реакции является получение нейтронов плутония, который применяется в качестве топлива для ядерных реакторов АЭС. Его наличие позволяет сократить добычу урана, запасы которого ограничены. Из килограмма урана-235 можно получить чуть более килограмма плутония-239, обеспечивая тем самым воспроизводство топлива.

В результате производство энергии в атомных энергоблоках при наименьших расходах дефицитного урана и отсутствия ограничений на производство возрастет в сотни раз. Подсчитано, что в этом случае урановых запасов хватит человечеству на несколько десятков веков. Оптимальным вариантом в атомной энергетике для сохранения баланса по минимальному расходу урана будет соотношение 4 к 1, где на четыре тепловых реактора будет использоваться один, работающий на быстрых нейтронах.

Цели БН-800

Во время срока эксплуатации в энергоблоке №4 Белоярской АЭС перед ядерным реактором были поставлены определенные задачи. Реактор БН-800 должен работать на MOX топливе. Небольшая заминка, произошедшая в начале работы, планы создателей не поменяла. По словам директора Белоярской АЭС г-н Сидорова переход в полном объеме на MOX топливо будет осуществлен в 2019 году. Если это осуществится, то местный ядерный реактор на быстрых нейтронах станет первым мире, полностью работающим с таким топливом. Он должен стать прототипом будущих подобных быстрых реакторов с жидкометаллическим теплоносителем, более производительных и безопасных. Исходя из этого на БН-800 проходит апробирование инновационного оборудования в рабочих условиях, проверка правильности применения новых технологий, влияющих на надежность, экономичность работы энергоблока.

class="eliadunit">

Проверка работы новой системы топливного цикла.

Испытания по выжиганию радиоактивных отходов с длительным сроком жизни.

Утилизация, накопленного в больших количествах, оружейного плутония.

БН-800, так же, как и его предшественник, БН-600, должны стать отправной точкой для накопления бесценного опыта создания и эксплуатации быстрых реакторов российским разработчикам.

Преимущества реактора на быстрых нейтронах

Применение в атомной энергетике БН-800 и ему подобных ядерных реакторов позволяет

Существенно увеличить срок по запасам урановых ресурсов, что значительно увеличивает полученный объем энергии.

Возможность сокращать срок жизни радиоактивных продуктов деления до минимального (от несколько тысяч лет до трехсот).

Повысить безопасность АЭС. Применение реактора на быстрых нейтронах позволяет нивелировать до минимального уровня возможность расплавления активной зоны, позволяет существенно повысить уровень самозащиты объекта, исключить выделения плутония при переработке. Реакторы такого типа с натриевым теплоносителем обладают повышенным уровнем безопасности.

17 августа 2016 года энергоблок №4 Белоярской АЭС вышел на режим работы мощности 100%. В объединенную систему «Урал» с декабря прошлого года поступает энергия, выработанная на быстром реакторе.

class="eliadunit">

После пуска и успешной эксплуатации Первой в мире АЭС в 1955 году по инициативе И. Курчатова было принято решение о строительстве на Урале промышленной атомной электростанции с водо-водяным реактором канального типа. К особенностям этого типа реакторов относится перегрев пара до высоких параметров непосредственно в активной зоне, что открывало возможность для использования серийного турбинного оборудования.

В 1958 году в центре России в одном из живописнейших уголков уральской природы развернулось строительство Белоярской АЭС. Для монтажников эта станция началась еще в 1957 году, а так как в те времена тема атомных станций была закрыта, в переписке и жизни она называлась Белоярская ГРЭС. Начинали эту станцию работники треста «Уралэнергомонтаж». Их усилиями в 1959 году была создана база с цехом изготовления водопаропроводов (1 контур реактора), построено три жилых дома в поселке Заречный и начато возведение главного корпуса.

В 1959 году на строительстве появились работники треста «Центроэнергомонтаж», которым поручалось монтировать реактор. В конце 1959 года на строительство АЭС был перебазирован участок из Дорогобужа Смоленской области и монтажные работы возглавил В. Невский, будущий директор Белоярской АЭС. Все работы по монтажу тепломеханического оборудования были полностью переданы тресту «Центроэнергомонтаж».

Интенсивный период строительства Белоярской АЭС начался с 1960 года. В это время монтажникам пришлось вместе с ведением строительных работ осваивать новые технологии по монтажу нержавеющих трубопроводов, облицовок спецпомещений и хранилищ радиоактивных отходов, монтаж конструкций реактора, графитовую кладку, автоматическую сварку и т.д. Обучались на ходу у специалистов, которые уже принимали участие в сооружении атомных объектов. Перейдя от технологии монтажа тепловых электростанции к монтажу оборудования атомных электростанций, работники «Центроэнергомонтажа» успешно справились со своими задачами, и 26 апреля 1964 года первый энергоблок Белоярской АЭС с реактором АМБ-100 выдал первый ток в Свердловскую энергосистему. Это событие наряду с вводом в эксплуатацию 1-го энергоблока Нововоронежской АЭС означало рождение большой ядерной энергетики страны.

Реактор АМБ-100 стал дальнейшим усовершенствованием конструкции реактора Первой в мире атомной электростанции в Обнинске. Он представлял собой реактор канального типа с более высокими тепловыми характеристиками активной зоны. Получение пара высоких параметров за счет ядерного перегрева непосредственно в реакторе стало большим шагом вперед в развитии атомной энергетики. реактор работал в одном блоке с турбогенератором мощностью 100 МВт.

В конструктивном отношении реактор первого энергоблока Белоярской АЭС оказался интересен тем, что он создавался фактически бескорпусным, т. е, реактор не имел тяжелого многотонного прочного корпуса, как, скажем, аналогичный по мощности реактор водо-водяного типа ВВЭР с корпусом длиной 11-12 м, диаметром 3-3,5 м, толщиной стенок и днища 100-150 мм и более. Возможность строительства АЭС с реакторами бескорпусного канального типа оказалась весьма заманчивой, поскольку освобождала заводы тяжелого машиностроения от необходимости изготовления стальных изделий массой 200-500 т. Но осуществление ядерного перегрева непосредственно в реакторе оказалось связано с известными трудностями регулирования процесса, особенно в части контроля за его ходом, с требованием точности работы очень многих приборов, наличием большого количества труб различных размеров, находящихся под высоким давлением, и т. д.

Первый блок Белоярской АЭС достиг полной проектной мощности, однако из-за относительно небольшой установленной мощности блока (100 МВт), сложности его технологических каналов и, следовательно, дороговизны, стоимость 1 кВтч электроэнергии оказалось существенно выше, чем у тепловых станций Урала.

Второй блок Белоярской АЭС с реактором АМБ-200 был построен быстрее, без больших напряжений в работе, так как строительно-монтажный коллектив был уже подготовлен. Реакторная установка была значительно усовершенствована. Она имела одноконтурную схему охлаждения, что упростило технологическую схему всей АЭС. Так же как в первом энергоблоке, главная особенность реактора АМБ-200 выдаче пара высоких параметров непосредственно в турбину. 31 декабря 1967 года энергоблок № 2 был включен в сеть – этим было завершено сооружение 1-й очереди станции.

Значительная часть истории эксплуатации 1-й очереди БАЭС была наполнена романтикой и драматизмом, свойственными всему новому. В особенности это было присуще периоду освоения блоков. Считалось, что проблем в этом быть не должно – были прототипы от реактора АМ «Первой в мире» до промышленных реакторов для наработки плутония, на которых апробировались основные концепции, технологии, конструктивные решения, многие типы оборудования и систем, и даже значительная часть технологических режимов. Однако оказалось, что разница между промышленной АЭС и ее предшественниками настолько велика и своеобразна, что возникли новые, ранее неведомые проблемы.

Наиболее крупной и явной из них оказалась неудовлетворительная надежность испарительных и пароперегревательных каналов. После непродолжительного периода их работы появлялась разгерметизация твэлов по газу или течь теплоносителя с неприемлемыми последствиями для графитовой кладки реакторов, технологических режимов эксплуатации и ремонта, радиационного воздействия на персонал и окружающую среду. По научным канонам и расчетным нормативам того времени этого не должно было быть. Углубленные исследования этого нового явления заставили пересмотреть установившиеся представления о фундаментальных закономерностях кипения воды в трубах, так как даже при малой плотности теплового потока возникал неизвестный ранее вид кризиса теплообмена, который был открыт в 1979 году В.Е. Дорощуком (ВТИ) и впоследствии назван «кризис теплообмена II рода».

В 1968 году было принято решение о строительстве на Белоярской АЭС третьего энергоблока с реактором на быстрых нейтронах – БН-600. Научное руководство созданием БН-600 осуществлялось Физико-энергетическим институтом, проект реакторной установки был выполнен Опытным конструкторским бюро машиностроения, а генеральное проектирование блока осуществляло Ленинградское отделение «Атомэлектропроект». Строил блок генеральный подрядчик – трест «Уралэнергострой».

При его проектировании учитывался опыт эксплуатации реакторов БН-350 в г. Шевченко и реактора БОР-60. Для БН-600 была принята более экономичная и конструктивно удачная интегральная компоновка первого контура, в соответствии с которой активная зона реактора, насосы и промежуточные теплообменники размещаются в одном корпусе. Корпус реактора, имеющий диаметр 12,8 м и высоту 12,5 м, устанавливался на катковых опорах, закрепленных на фундаментной плите шахты реактора. Масса реактора в сборе составляла 3900 т., а общее количество натрия в установке превышает 1900 тонн. Биологическая защита была выполнена из стальных цилиндрических экранов, стальных болванок и труб с графитовым заполнителем.

Требования к качеству монтажных и сварочных работ для БН-600 оказались на порядок выше достигнутых ранее, и коллективу монтажников пришлось срочно переобучать персонал и осваивать новые технологии. Так в 1972 году при сборке корпуса реактора из аустенитных сталей на контроле просвечиванием крупных сварных швов впервые был применен бетатрон.

Кроме того, при монтаже внутрикорпусных устройств реактора БН-600 предъявлялись особые требования по чистоте, велась регистрация всех вносимых и выносимых деталей из внутриреакторного пространства. Это было обусловлено невозможностью в дальнейшем промывки реактора и трубопроводов с теплоносителем-натрием.

Большую роль в разработке технологии монтажа реактора сыграл Николай Муравьев, которого удалось пригласить на работу из Нижнего Новгорода, где он раньше работал в конструкторском бюро. Он являлся одним из разработчиков проекта реактора БН-600, и к тому времени уже находился на пенсии.

Коллектив монтажников успешно справился с поставленными задачами по монтажу блока на быстрых нейтронах. Заливка реактора натрием показала, что чистота контура была выдержана даже выше требуемой, так как температура застывания натрия, которая зависит в жидком металле от наличия посторонних загрязнений и окислов, оказалась ниже достигнутых на монтаже реакторов БН-350, БОР-60 в СССР и АЭС «Феникс» во Франции.

Успех работы монтажных коллективов на сооружении Белоярской АЭС во многом зависел от руководителей. Сначала это был Павел Рябуха, потом пришел молодой энергичный Владимир Невский, затем его сменил Вазген Казаров. В. Невский много сделал для становления коллектива монтажников. В 1963 году его назначили директором Белоярской АЭС, а в дальнейшем он возглавил «Главатомэнерго», где много трудился для становления атомной энергетики страны.

Наконец, 8 апреля 1980 г. состоялся энергетический пуск энергоблока № 3 Белоярской АЭС с реактором на быстрых нейтронах БН-600. Некоторые проектные характеристики БН-600:

  • электрическая мощность – 600 МВт;
  • тепловая мощность – 1470 МВт;
  • температура пара – 505 о С;
  • давление пара – 13,7 МПа;
  • термодинамический КПД брутто – 40,59 %.

Следует специально остановиться на опыте обращения с натрием в качестве теплоносителя. Он имеет неплохие теплофизические и удовлетворительные ядерно-физические свойства, хорошо совместим с нержавеющими сталями, двуокисью урана и плутония. Наконец, он не дефицитен и относительно недорог. Однако он весьма химически активен, из-за чего его применение потребовало решения, по крайней мере, двух серьезных задач: сведения к минимуму вероятности течи натрия из контуров циркуляции и межконтурных течей в парогенераторах и обеспечения эффективной локализации и прекращения горения натрия в случае го утечки.

Первая задача в целом довольно успешно была решена в стадии разработки проектов оборудования и трубопроводов. Весьма удачной оказалась интегральная компоновка реактора, при которой все основное оборудование и трубопроводы 1-го контура с радиоактивным натрием были «спрятаны» внутри корпуса реактора, и поэтому его утечка в принципе оказалась возможной только из немногочисленных вспомогательных систем.

И хотя БН-600 сегодня является самым крупным энергоблоком с реактором на быстрых нейтронах в мире, Белоярская АЭС не входит в число атомных станций с большой установленной мощностью. Ее отличия и достоинства определяются новизной и уникальностью производства, его целей, технологии и оборудования. Все реакторные установки БелАЭС были предназначены для опытно-промышленного подтверждения или отрицания заложенных проектировщиками и конструкторами технических идей и решений, исследования технологических режимов, конструкционных материалов, тепловыделяющих элементов, управляющих и защитных систем.

Все три энергоблока не имеют прямых аналогов ни у нас в стране, ни за рубежом. В них были воплощены многие из идей перспективного развития ядерной энергетики:

  • сооружены и освоены энергоблоки с канальными водографитовыми реакторами промышленных масштабов;
  • применены серийные турбоустановки высоких параметров с КПД теплосилового цикла от 36 до 42 %, чего не имеет ни одна АЭС в мире;
  • применены ТВС, конструкция которых исключает возможность попаданий осколочной активности в теплоноситель даже при разрушении твэлов;
  • в первом контуре реактора 2-го блока применены углеродистые стали;
  • в значительной мере освоена технология применения и обращения с жидкометаллическим теплоносителем;

Белоярской АЭС первой из атомных электростанций России столкнулась на практике с необходимостью решения задачи вывода из эксплуатации отработавших ресурс реакторных установок. Развитие этого весьма актуального для всей атомной энергетики направления деятельности из-за отсутствия организационно-нормативной документальной базы и нерешенности вопроса финансового обеспечения имело длительный инкубационный период.

Более чем 50-летний период эксплуатации Белоярской АЭС имеет три достаточно выраженных этапа, каждому из которых были присущи свои направлений деятельности, специфические трудности ее осуществления, успехи и разочарования.

Первый этап (с 1964 года до середины 70-х гг.) был всецело связан с пуском, освоением и достижением проектного уровня мощности энергоблоков 1-й очереди, множеством реконструктивных работ и решением проблем, связанных с несовершенством проектов блоков, технологических режимов и обеспечением устойчивой работы топливных каналов. Все это потребовало от коллектива станции огромных физических и интеллектуальных усилий, которые, к сожалению, не увенчались уверенностью в правильности и перспективности выбора уран-графитовых реакторов с ядерным перегревом пара для дальнейшего развития атомной энергетики. Однако наиболее существенная часть накопленного опыта эксплуатации 1-й очереди была учтена проектировщиками и конструкторами при создании уран-графитовых реакторов последующего поколения.

Начало 70-х годов связано с выбором для дальнейшего развития атомной энергетики страны нового направления – реакторных установок на быстрых нейтронах с последующей перспективой строительства нескольких энергоблоков с реакторами-размножителями на смешанном уран-плутониевом топливе. При определении места строительства первого опытно-промышленного блока на быстрых нейтронах выбор пал на Белоярскую АЭС. Существенное влияние на этот выбор оказало признание способностей коллективов строителей, монтажников и персонала станции должным образом построить этот уникальный энергоблок и в дальнейшем обеспечить его надежную эксплуатацию.

Это решение обозначило второй этап в развитии Белоярской АЭС, которым большей своей частью был завершен с решением Государственной комиссии о приемке законченного строительства энергоблока с реактором БН-600 с редко применяемой в практике оценкой «отлично».

Обеспечение качественного выполнения работ этого этапа было поручено лучшим специалистам как у подрядчиков по строительству и монтажу, так и из состава эксплуатационного персонала станции. Персонал станции приобрел большой опыт в наладке и освоении оборудования АЭС, что было активно и плодотворно использовано в ходе пусконаладочных работ на Чернобыльской и Курской АЭС. Особо следует сказать о Билибинской АЭС, на которой кроме пуско-наладочных работ был выполнен глубокий анализ проекта, на базе которого был внесен ряд значительных усовершенствований.

С пуском в эксплуатацию третьего блока начался третий этап существования станции, продолжающийся уже более 35 лет. Целями этого этапа было достижение проектных показателей блока, подтверждение практикой жизнеспособности конструктивных решений и приобретение опыта эксплуатации для последующего учета в проекте серийного блока с реактором-размножителем. Все эти цели к настоящему времени успешно достигнуты.

Концепции обеспечения безопасности, заложенные в проекте блока, в целом подтвердились. Так как точка кипения натрия почти на 300 о С превышает его рабочую температуру, реактор БН-600 работает почти без давления в корпусе реактора, который стало возможным изготовить из высокопластичной стали. Это практически исключает возможность возникновения быстроразвивающихся трещин. А трехконтурная схема передачи тепла от активной зоны реактора с увеличением давления в каждом последующем контуре полностью исключает возможность попадания радиоактивного натрия 1-го контура во второй (не радиоактивный) и тем более – в пароводяной третий контур.

Подтверждением достигнутого высокого уровня безопасности и надежности БН-600 является выполненный после аварии на Чернобыльской АЭС анализ безопасности, который не выявил необходимости каких-либо технических усовершенствований срочного характера. Статистика срабатывания аварийных защит, аварийных отключений, неплановых снижений рабочей мощности и других отказов показывает, что реактор БН-6ОО находится, по крайней мере, в числе 25 % лучших ядерных блоков мира.

По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России».

В предпусковой стадии находится энергоблок № 4 с реактором на быстрых нейтронах БН-800. Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт 27 июня 2014 года был выведен на минимальный контролируемый уровень мощности. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ядерно-топливного цикла.

Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства.

Когда нам сообщают, к примеру, что «построена электростанция на солнечных панелях мощностью 1200 МВт», это вовсе не значит, что эта СЭС даст столько же электроэнергии, сколько ее дает атомный реактор ВВЭР-1200. Солнечные панели не могут работать ночью – следовательно, если усреднить по временам года, половину суток они простаивают, а это уже уменьшает КИУМ вдвое. Солнечные панели, даже самых новых разновидностей, в пасмурную погоду работают значительно хуже, и средние величины тут тоже не радуют – тучки с дождичками да снегом, туманы уменьшают КИУМ еще в два раза. «СЭС мощностью 1200 МВт» звучит звонко, но надо держать в голове цифру 25% – эти мощности технологически могут быть использованы только на ¼.

Солнечные панели, в отличие от АЭС, работают не 60-80 лет, а 3-4 года, утрачивая возможность преобразования солнечного света в электрический ток. Можно, конечно, говорить о некоем «удешевлении генерации», но это ведь откровенное лукавство. Солнечные электростанции требуют большие участки территории, проблемами утилизации отработавших свой срок солнечных панелей пока никто нигде толком не занимался. Утилизация потребует разработки достаточно серьезных технологий, экологию вряд ли радующих. Если говорить о электростанциях, использующих ветер, то слова придется использовать почти те же, поскольку и в этом случае КИУМ составляет около четверти установленной мощности. То вместо ветра штиль, то ветер такой силы, что вынуждает остановить «мельницы», поскольку угрожает целости их конструкции.

Погодные капризы энергетики на ВИЭ

Никуда не деться и от второй «ахиллесовой пяты» ВИЭ. Электростанции на их основе работают не тогда, когда вырабатываемая ими электроэнергия необходима потребителям, а тогда, когда на улице солнечная погода или ветер подходящей силы. Да, такие электростанции могут вырабатывать электроэнергию, но что делать, если сети электропередач не способны ее принять? Подул ночью ветер, можно включать ветровые ЭС (электростанции), но ночью и мы с вами спим, и предприятия не работают. Да, такие традиционные ЭС на возобновляемых ресурсах, как ГЭС, с этой проблемой умеют справляться, увеличивая холостой сброс воды («мимо турбины») или попросту накапливая запас воды в своих водохранилищах, но в случае паводков и им приходится не так просто. А для ЭС на солнце и ветре технологии аккумулирования энергии не настолько развиты, чтобы выработанную электроэнергию «припасти» на тот момент, когда вырастет потребление в сети.

Есть и обратная сторона медали. Будет ли инвестор вкладываться в строительство, допустим, газовой ЭС в регионе, где в массовом количестве установлены солнечные панели? Деньги-то вложенные как окупать, если половину времени «твоя» электростанция не работает? Срок окупаемости, банковские проценты… «Ай, да зачем мне такая головная боль – заявляет осторожничающий капиталист и ничего не строит. А у нас – погодная аномалия, дожди на неделю зарядили при полном штиле. И крики возмущенных потребителей, вынужденных запускать дизель-генераторы на лужайках перед домом, сливаются в гул. Инвесторов пинками строить тепловые ЭС не заставишь, без льгот и субсидий со стороны государства они рисковать не будут. А это в любом случае становится дополнительной нагрузкой на государственные бюджеты, равно как и в том случае, если государство, не найдя сговорчивых инвесторов, строит тепловые ЭС самостоятельно.

Нам много рассказывают про то, как много солнечных панелей используют в Германии, не так ли? Но при этом в стране растет количество электростанций, работающих на местном буром угле, нещадно выбрасывая в атмосферу тот самый «цэ о два», с которым надо бороться, выполняя условия Парижского соглашения 2015 года. «Бурые электростанции» вынуждены строить федеральное правительство Германии, органы управления федеральными землями – у них нет другого выхода, в противном случае те самые поклонники «зеленой энергетики» выйдут на улицы с протестами из-за того, что в их розетках нету тока, что по вечерам приходится сидеть при лучине.

Утрируем, конечно – но только для того, чтобы очевиднее была абсурдность ситуации. Если генерация электроэнергии в буквальном смысле этого слова зависит от погоды, то получается, что за счет солнца и ветра удовлетворять базовые потребности в электроэнергии технически невозможно. Да, теоретически можно опутать всю Европу с Африкой дополнительными ЛЭП (линиями электропередач), чтобы ток из солнечной Сахары пришел в дома, стоящие на хмуром побережье Северного моря, но это стоит уже совсем невероятных денег, срок окупаемости которых близится к бесконечности. Рядом с каждой СЭС держать ЭС на угле или на газе? Повторимся, но сжигание углеводородных энергетических ресурсов на электростанциях не дает возможности выполнять в полном объеме положения Парижского соглашения о снижении выбросов СО 2 .

АЭС как основа «зеленой энергетики»

Тупик? Для тех стран, которые решили избавляться от атомной энергетики – именно он. Конечно, выход из него ищут. Усовершенствуют системы сжигания угля, газа, отказываются от ЭС на мазуте, прилагают усилия для повышения КПД топок, парогенераторов, котлов, наращивают усилия по применению энергосберегающих технологий. Это хорошо, это полезно, это обязательно надо делать. Но Россия и ее Росатом предлагают куда более радикальный вариант – строить АЭС.

Строительство АЭС, Фото: rusatom-overseas.com

Вам такой способ кажется парадоксальным? Давайте посмотрим на него с точки зрения логики. Во первых, выбросы СО 2 из атомных реакторов отсутствуют как таковые – нет в них никаких химических реакций, не ревет в них буйно пламя. Следовательно, выполнение условий Парижского соглашения «имеет место быть». Второй момент – масштаб генерации электроэнергии на АЭС. В большинстве случаев на площадках атомной электростанции стоят, как минимум, два, а то и все четыре реактора, их совокупная установленная мощность огромна, а КИУМ стабильно превышает 80%. Эта «прорва» электроэнергии достаточна, чтобы удовлетворить потребности не одного города, а целого региона. Вот только атомные реакторы «не любят», когда меняют их мощность. Извините, сейчас будет немножко технических подробностей, чтобы было понятнее, что мы имеем в виду.

Системы управления и защиты атомных реакторов

Принцип работы энергетического реактора схематично не так уж и сложен. Энергия атомных ядер превращается в тепловую энергию теплоносителя, тепловая энергия превращается в механическую энергию ротора электрогенератора, та, в свою очередь, преобразуется в энергию электрическую.

Атомная – тепловая – механическая – электрическая, такой вот своеобразный цикл энергий.

В конечном итоге, электрическая мощность реактора зависит от мощности контролируемой, управляемой атомной цепной реакции деления ядерного топлива. Подчеркиваем – контролируемой и управляемой. Что бывает, если цепная реакция из-под контроля и управления выходит, мы, к огромному сожалению, хорошо знаем с 1986 года.

Как контролируют и управляют течением цепной реакции, что необходимо делать для того, чтобы реакция не распространилась сразу на весь объем урана, содержащегося в «атомном котле»? Вспоминаем школьные прописные истины, не вдаваясь в научные подробности ядерной физики – этого будет вполне достаточно.

Что такое цепная реакция «на пальцах», если кто-то подзабыл: прилетел один нейтрон, выбил два нейтрона, два нейтрона выбили четыре и так далее. Если число этих самых свободных нейтронов становится слишком большим, реакция деления распространится на весь объем урана, грозя перерасти в «большой ба-бах». Да, конечно, ядерного взрыва не состоится, для него необходимо, чтобы содержание изотопа урана-235 в топливе превышало 60%, а в энергетических реакторах обогащение топлива не превышает 5%. Но и без атомного взрыва проблем будет выше головы. Перегреется теплоноситель, сверхкритично вырастет его давление в трубопроводах, после их разрыва может нарушиться целостность тепловыделяющих сборок и все радиоактивные вещества вырвутся за пределы реактора, безумно загрязнив прилегающие территории, ворвутся в атмосферу. Впрочем, подробности катастрофы Чернобыльской АЭС известны всем, не будем повторяться.

Авария на Чернобыльской АЭС, Фото: meduza.io

Одна из основных составляющих любого атомного реактора – СУЗ, система управления и защиты. Свободных нейтронов не должно быть больше жестко рассчитанной величины, но их не должно быть и меньше этой величины – это приведет к затуханию цепной реакции, АЭС просто «встанет». Внутри реактора должно находиться вещество, которое поглощает лишние нейтроны, но в том количестве, которое позволяет продолжаться цепной реакции. Физики-атомщики давно вычислили, какое вещество делает это лучше всего – изотоп бора-10, поэтому систему управления и защиты называют еще и попросту «борной».

Стержни с бором включены в конструкцию реакторов с графитовым и водным замедлителем, для них имеются такие же технологические каналы, как и для ТВЭЛ-ов, тепловыделяющих элементов. Счетчики нейтронов в реакторе работают непрерывно, автоматически отдавая команду системе, управляющей стержнями с бором, та перемещает эти стержни, погружая или извлекая их из реактора. При начале топливной сессии урана в реакторе много – борные стержни погружены глубже. Идет время, выгорает уран, и борные стержни начинают постепенно извлекать – количество свободных нейтронов должно оставаться постоянным. Да, заметим, что есть еще и «аварийные» борные стержни, «висящие» над реактором. В случае нарушений, потенциально способных вывести цепную реакцию из-под контроля, они погружаются в реактор мгновенно, на корню убивая цепную реакцию. Прорвало трубопровод, произошла утечка теплоносителя – это риск перегрева, аварийные борные стержни срабатывают мгновенно. Остановим реакцию и потихоньку разберемся, что именно произошло и как устранить проблему, а риск должен быть сведен к нулю.

Нейтроны бывают разные, а бор у нас один

Простая логика, как видите, показывает, что увеличение и уменьшение энергетической мощности атомного реактора – «маневр по мощности», как говорят энергетики – очень непростая работа, в основе которой лежит ядерная физика, квантовая механика. Еще чуточку «вглубь процесса», не сильно далеко, не бойтесь. При любой реакции деления уранового топлива образуются вторичные свободные нейтроны – те самые, которые в школьной формуле «выбил два нейтрона». В энергетическом реакторе два вторичных нейтрона – это слишком много, для контролируемости и управляемости реакции нужен коэффициент 1,02. Прилетело 100 нейтронов, выбило 200 нейтронов, и вот из этих 200 вторичных нейтронов 98 должен «скушать», поглотить тот самый бор-10. Подавляет бор излишнюю активность, это мы вам точно говорим.

Но помните, что бывает, если ребенка ведром мороженого накормить – он с удовольствием скушает первые 5-6 порций, а потом уйдет прочь, поскольку «больше не влезает». Человеки из атомов состоят, потому и характер у атомов ничем особо от нашего не отличается. Бор-10 может кушать нейтроны, но не бесконечное же количество, обязательно настанет то самое «больше не влезает». Бородатые в белых халатах на АЭС подозревают, что многие догадываются, что в душе атомщики остаются любопытными детьми, поэтому стараются использовать как можно более «взрослую» лексику. Бор в их лексиконе не «обожрался нейтронами», а «выгорел» – это звучит намного солиднее, согласитесь. Так или иначе, но каждое требование электросетей «приглушить реактор» приводит к более интенсивному выгоранию системы борной защиты и управления, вызывает дополнительные сложности.

Макет реактора на «быстрых» нейтронах, Фото: topwar.ru

С коэффициентом 1,02 тоже не все так просто, поскольку кроме мгновенных вторичных нейтронов, которые возникают сразу после реакции деления, есть еще и запаздывающие. Атом урана после деления разваливается на части, и вот из этих осколков тоже вылетают нейтроны, но спустя несколько микросекунд. Их немного по сравнению с мгновенными, всего около 1%, но при коэффициенте 1,02 и они весьма важны, ведь 1,02 – это прибавка всего-то в 2%. Следовательно, расчет количества бора нужно выполнять с ювелирной точностью, постоянно балансируя на тонкой грани «выход реакции из-под контроля – внеплановая остановка реактора». Потому в ответ на каждое требование «подай газку!» или «тормози, чего так раскочегарился!» начинается цепная реакция дежурной смены АЭС, когда каждый атомщик из ее состава предлагает большее количество идиоматических выражений…

И еще раз об АЭС как об основе «зеленой энергетики»

Вот теперь вернемся к тому, на чем остановились – на большой мощности генерации электроэнергии, на большой территории, которую обслуживает АЭС. Чем больше территория – тем больше возможностей разместить на ней ЭС, работающих на ВИЭ. Чем больше таких ЭС – тем выше вероятность того, что пиковое потребление совпадет с периодом их наибольшей генерации. Вот оттуда придет электроэнергия солнечных панелей, вот отсюда – энергия ветра, вот там о борт удачно ударит приливная волна, и все вместе они сгладят пиковую нагрузку, позволят атомщикам на АЭС спокойно пить чай, поглядывая на монотонно, без перебоев работающие счетчики нейтронов.

Возобновляемые источники энергии, hsto.org

Чем спокойнее обстановка на АЭС – тем толще могут становиться бюргеры, поскольку без проблем смогут и дальше греть на гриле свои колбаски. Как видите, ничего парадоксального в сочетании ЭС на ВИЭ и атомной генерации как базовой нет, все ровно наоборот – такое сочетание, если уж мир всерьез решил бороться с выбросами СО 2 , и есть оптимальный выход из ситуации, ни в коей мере не перечеркивая всех вариантов модернизаций и усовершенствований тепловых ЭС, о которых мы говорили.

Продолжая «стиль кенгуру», предлагаем «перепрыгнуть» на самое первое предложение этой статьи – о конечности любых традиционных энергетических ресурсов на планете Земля. В силу этого магистральное, стратегическое направление развития энергетики – покорение термоядерной реакции, однако технология ее невероятно сложна, требует слаженных, совместных усилий ученых и конструкторов всех стран, серьезных вложений и многих лет упорного труда. Сколько понадобится времени, сейчас можно гадать на кофейной гуще или внутренностях птиц, а закладываться нужно, разумеется, на самый пессимистический сценарий. Нужно искать топливо, которое способно обеспечить ту самую базовую генерацию на как можно более длительный срок. Нефти и газа как бы полным полно, но и население планеты растет, и к уровню потребления такому же, как в странах «золотого миллиарда» стремятся новые и новые царства-государства. По прикидкам геологов, ископаемого углеводородного топлива на Земле осталось годиков на 100-150, если только потребление не будет расти более быстрыми темпами, чем в нынешнее время. А оно, похоже, так и получится, поскольку население развивающихся стран жаждет повышения уровня комфорта…

Реакторы на быстрых нейтронах

Предлагаемый российским атомным проектом выход из сложившейся ситуации известен, это – замыкание ядерного топливного цикла за счет вовлечения в процесс ядерных реакторов-бридеров, реакторов на быстрых нейтронах. Бридер – это реактор, в котором в результате топливной сессии ядерного топлива на выходе получается больше, чем его изначально загрузили, реактор-размножитель. Те, кто еще не совсем забыл курс школьной физики, вполне могут задать вопрос: простите, а как же закон сохранения массы? Ответ прост – да никак, поскольку в ядерном реакторе и процессы ядерные, и закон сохранения массы не действует в классическом виде.

Альберт Эйнштейн больше сотни лет назад в специальной теории относительности связал воедино массу и энергию, и в атомных реакторах эта теория является сугубой практикой. Сохраняется общее количество энергии, а про сохранение общего количества массы в данном случае речи не идет. В атомах ядерного топлива «спит» огромный запас энергии, высвобождающийся в результаты реакции деления, часть этого запаса мы используем себе во благо, а другая часть удивительным образом превращает атомы урана-238 в смесь атомов изотопов плутония. Реакторы на быстрых нейтронах, и только они – позволяют превратить в топливный ресурс основной компонент урановой руды – уран-238. Накопленные в процессе работы АЭС на тепловых нейтронах запасы обедненного по содержанию урана-235, неиспользуемого в тепловых атомных реакторах урана-238, составляют сотни тысяч тонн, которые уже не надо добывать из шахт, которые уже не надо «вышелушивать» от пустой породы – его на заводах по обогащению урана неимоверное количество.

МОКС-топливо «на пальцах»

Теоретически понятно, но не до конца, потому попробуем снова «на пальцах». Само название «МОКС-топливо» – всего лишь буквами славянского алфавита записанная англоязычная аббревиатура, которая пишется как МОХ. Расшифровка – Mixed-Oxide fuel, вольный перевод – «топливо из микста оксидов». В основном под этим термином понимают микст оксида плутония и оксида урана, но это только в основном. Поскольку наши уважаемые американские партнеры освоить технологию производства МОКС-топлива из оружейного плутония оказались не в силах, отказалась от этого варианта и Россия. Но построенный нами завод заранее был рассчитан как универсальный – он способен производить МОКС-топливо и из ОЯТ тепловых реакторов. Если кто-то читал статьи Геоэнергетики.ru по этому поводу, то помнит, что изотопы плутония 239, 240 и 241 в ОЯТ уже «замикстованы» – их там по 1/3 каждого, так что в МОКС-топливе, созданном из ОЯТ, присутствует микст плутония, эдакий вот микст внутри микста.

Вторая же часть основного микста – обедненный уран. Утрируя: берем микст оксида плутония, добытого из ОЯТ при помощи ПУРЕКС-процесса, досыпаем безхозный уран-238 и получаем МОКС-топливо. Уран-238 при этом в цепной реакции не участвует, «горит» только микст изотопов плутония. Но уран-238 не просто «присутствует» – изредка, нехотя, время от времени он принимает внутрь себя один нейтрон, превращаясь в плутоний-239. Часть этого нового плутония тут же и «сгорает», а часть просто не успевает этого сделать до окончания топливной сессии. Вот, собственно, и весь секрет.

Цифры условны, взяты с потолка, просто для наглядности. В начальном составе МОКС-топлива 100 кило оксида плутония и 900 кило урана-238. Пока «горел» плутоний, 300 кило урана-238 превратились в дополнительный плутоний, из которого 150 кило тут же и «сгорело», а 150 кило не успело. Вытащили ТВС, «вытряхнули» из него плутоний, но его оказалось на 50 кило больше, чем было изначально. Ну, или вот то же самое, но на дровах: кинул в топку 2 полена, печка у тебя всю ночь грела, а утром ты из нее вытащил … три полена. Из 900 кг бесполезного, неучаствующего в цепной реакции урана-238 при его использовании в составе МОКС-топлива получили 150 кило топлива, которое с пользой для нас тут же «прогорело», да еще и 150 кило осталось для дальнейшего использования. А этого отвального, бесполезного урана-238 стало на 300 кило меньше, что тоже не плохо.

Реальные соотношения обедненного урана-238 и плутония в МОКС-топливе, разумеется, другие, поскольку при наличии в МОКС-топливе 7% плутония смесь ведет себя почти так же, как обычное урановое топливо с обогащением по урану-235 около 5%. Но придуманные нами цифры показывают главный принцип МОКС-топлива – бесполезный уран-238 превращается в ядерное топливо, его огромные запасы становятся энергетическим ресурсом. По приблизительным подсчетам, если предположить, что на Земле прекратить использовать углеводородное топливо для производства электроэнергии и перейти только на использование урана-238, нам его хватит на 2’500 – 3’000 лет. Вполне приличный запас времени, чтобы успеть освоить технологию управляемого термоядерного синтеза.

МОКС-топливо позволяет одновременно решить и еще одну проблему – уменьшить запасы накопленного во всех странах-участницах «атомного клуба» ОЯТ, уменьшить количество накопленных в ОЯТ радиоактивных отходов. Тут дело не в неких чудесных свойствах МОКС-топлива, все прозаичнее. Если ОЯТ не использовать, а пытаться отправить его на вечное геологическое захоронение, то вместе с ним придется отправлять на захоронение и все высокоактивные отходы, которые в нем содержатся. А вот применение технологий переработки ОЯТ с целью извлечения из него плутония волей-неволей вынуждает нас сокращать объемы этих радиоактивных отходов. В борьбе за использование плутония мы просто таки вынуждены уничтожать радиоактивные отходы, но при этом процесс такого уничтожения становится куда как менее затратен – ведь плутоний идет в дело.

МОКС-топливо – дорогое удовольствие, которое нужно сделать дешевым

При этом производство МОКС-топлива в России началось совсем недавно, даже у самого нового, самого технологичного реактора на быстрых нейтронах – БН-800, переход на 100%-ное использование МОКС-топлива происходит в режиме онлайн, тоже еще не завершен. Совершенно естественно, что в настоящее время производство МОКС-топлива обходится дороже, чем производство традиционного уранового. Удешевление производства, как и в любой другой отрасли промышленности, возможно, прежде всего, за счет производства массового, «конвейерного».

Следовательно, для того, чтобы замыкание ядерного топливного цикла было целесообразно с экономической точки зрения, в России нужно большее количество реакторов на быстрых нейтронах, это должно стать стратегической линией развития атомной энергетики. Больше реакторов – хороших и разных!

При этом необходимо не выпускать из поля зрения и вторую возможность использования МОКС-топлива – в качестве топлива для реакторов ВВЭР. Реакторы на быстрых нейтронах создают такое дополнительное количество плутония, которое они сами использовать уже толком и не могут – им столько просто не надо, плутония хватит и для реакторов ВВЭР. Мы выше уже писали, что МОКС-топливо, в котором на 93% обедненного урана-238 приходится 7% плутония, ведет себя почти так же, как обычное урановое топливо. Да вот только применение МОКС-топлива в тепловых реакторах приводит к снижению эффективности применяемых в ВВЭР поглотителей нейтронов. Причина этого заключается в том, что бор-10 гораздо хуже поглощает быстрые нейтроны – таковы его физические особенности, на которые мы никак повлиять не можем. Такая же проблема возникает и с аварийными борными стержнями, предназначение которых – мгновенная остановка цепной реакции в случае нештатных ситуаций.

Разумный выход – снижение количества МОКС-топлива в ВВЭР до 30-50%, что уже реализуется на части легководных реакторов Франции, Японии и других стран. Но и в этом случае может потребоваться модернизация борной системы и выполнение всех необходимых обоснований безопасности, сотрудничество с надзорными органами МАГАТЭ для получения лицензий на использование МОКС-топлива в тепловых реакторах. Или, если коротко – количество борных стержней придется увеличить, причем и тех, которые предназначены для управления, и тех, что «припасены» на случай ЧП. Но только освоение этих технологий позволит перейти к массовому производству этого вида топлива, к удешевлению его производства. Одновременно это позволит значительно более активно решать и проблемы уменьшения количества ОЯТ, более активно использовать запасы обедненного урана.

Перспективы близки, но дорога не проста

Освоение этой технологии в сочетании со строительством реакторов-бридеров энергетического плутония – реакторов на быстрых нейтронах позволит России не только замкнуть ядерный топливный цикл, но и сделать его экономически привлекательным. Большие перспективы имеются и у использования СНУП-топлива (смешанное нитридное уран-плутониевое топливо). Экспериментальные ТВС, прошедшие в 2016 году облучение на реакторе БН-600, уже доказали свою эффективность как при реакторных испытаниях, так и по итогам послереакторных исследований. Полученные результаты дают для продолжения работ по обоснованию использования СНУП-топлива при создании реакторной установки БРЕСТ-300 и пристанционных модулей по производству СНУП-топлива опытно-демонстрационного комплекса, строящегося в Северске. БРЕСТ-300 позволит продолжить отработку технологий, необходимых для полного замыкания ядерного топливного цикла, обеспечить более полное решение проблем ОЯТ и РАО, реализовать идеологию «вернуть природе столько же радиоактивности, сколько ее было извлечено». Реактор БРЕСТ-300, как и реакторы БН – реактор на быстрых нейтронах, что только подчеркивает правильность стратегического направления развития атомной энергетики – сочетание водноводяных реакторов и реакторов на быстрых нейтронах.

Освоение технологии 100%-ного использования МОКС-топлива на БН-800 обеспечивает и возможность создания реакторов БН-1200 – не только более мощных, но и экономически более выгодных. Решение о создании в России реактора БН-1200 принято, а это означает, что темп научно-исследовательских работы атомным специалистам придется только увеличивать, и создание МБИР, намеченное на 2020 год, может существенно помочь в решении всех проблем, в освоении технологии полного замыкания топливного ядерного цикла. Россия была и остается единственно страной, создавшей энергетические реакторы на быстрых нейтронах, обеспечив наше мировое лидерство в этом важнейшем направлении атомной энергетики.

Разумеется, все рассказанное – всего лишь первое знакомство с особенностями реакторов на быстрых нейтронах, но мы постараемся продолжить, поскольку тема эта важная и, как нам кажется, достаточно интересная.

Вконтакте

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС — Белоярская(с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах — БН-600.

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» — это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы — реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей- веществ, при столкновениях с ядрами которых нейтроны теряют энергию. Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.


Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120−140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода- замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок- в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder- производитель).

Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями. 370 топливных сборок образуют три зоны с различным обогащением по урану-235 — 17, 21 и 26% (изначально зон было только две, но чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства). Реактор БН-600 относится к размножителям (бридерам), то есть на 100 разделившихся в активной зоне ядер урана-235 в боковых и торцевых экранах нарабатывается 120−140 ядер плутония, что дает возможность расширенного воспроизводства ядерного топлива. Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) — трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части. В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней — головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно. Для управления реактором используются 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» — фотонейтронный источник (гамма-излучатель плюс бериллий).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi — уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.


Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985−1997), Monju (Япония, 1994−1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране — всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!


Цех сборки реактора, где из отдельных деталей методом крупноузловой сборки собирают отдельные части реактора

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Перезагрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотная пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены. Процесс перегрузки выключает множество этапов. Сначала захват подводится к одной из сборок, находящихся во внутриреакторном хранилище отработанных сборок, извлекает ее и переносит в элеватор выгрузки. Затем ее поднимают в передаточный бокс и помещают в барабан отработавших сборок, откуда она после очистки паром (от натрия) попадет в бассейн выдержки. На следующем этапе механизм извлекает одну из сборок активной зоны и переставляет ее во внутриреакторное хранилище. После этого из барабана свежих сборок (в который заранее устанавливают ТВСы, пришедшие с завода) извлекают нужную, устанавливают ее в элеватор свежих сборок, который подает ее к механизму перегрузки. Последний этап — установка ТВС в освободившуюся ячейку. При этом на работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне. Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи, и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования — менее 0,01 градуса), усилий извлечения и постановки.


Процесс перезагрузки включает множество этапов, производится с помощью специального механизма и напоминает игру в «15». Конечная цель — попадание свежих сборок из соответствующего барабана в нужное гнездо, а отработавших — в свой барабан, откуда они после очистки паром (от натрия) попадут в бассейн выдержки.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии — от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, — объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. — Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию". С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, — оно лишь чуть выше атмосферного».


По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы — как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».


«Проблемы действительно были одни и те же, — добавляет директор Белоярской АЭС Николай Ошканов, — но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения" сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола, — открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, — говорит Николай Ошканов.- Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».



Новое на сайте

>

Самое популярное