Домой Гигиена Использование эффекта доплера для измерения физических величин. Доплеровское смещение

Использование эффекта доплера для измерения физических величин. Доплеровское смещение

Эффектом Доплера называют изменение длины и частоты регистрируемых приемником волн, которое вызывает движение их источника либо самого приемника. Данное название эффект получил в честь Кристиана Доплера, который открыл его. Доказать гипотезу экспериментальным методом позднее удалось голландскому ученому Кристиану Баллоту, посадившему в открытый железнодорожный вагон духовой оркестр и собравшему на платформе группу из самых одаренных музыкантов. Когда вагон с оркестром проезжал рядом с платформой, музыканты тянули какую-либо ноту, а слушатели записывали на бумаге то, что им слышалось. Как и ожидалось, восприятие высоты звука напрямую зависело от , как и гласил закон Доплера.

Действие эффекта Доплера

Объясняется данное явление довольно просто. На слышимый тон звука влияет частота звуковой волны, которая доходит до уха. При движении источника звука навстречу человеку каждая последующая волна приходит все быстрее. Ухо воспринимает волны как более частые, из-за чего звук кажется более высоким. Но в процессе удаления источника звука последующие волны испускаются чуть дальше и доходят до уха позднее предыдущих, из-за чего звук ощущается ниже.

Такое явление происходит не только во время движения источника звука, но и человека. «Набегая» на волну, человек пересекает ее гребни чаще, воспринимая звук как более высокий, а уходя от волны – наоборот. Таким образом, эффект Доплера не зависит ни от движется источника звука, ни его приемника по отдельности. Соответствующее звуковое восприятие возникает в процессе их движения относительно друг друга, причем данный эффект характерен не только для звуковых волн, но и световых, а также радиоактивного излучения.

Применение эффекта Доплера

Эффект Доплера не перестает играть чрезвычайно важную роль в самых разных областях науки и жизнедеятельности человека. С помощью него астрономам удалось выяснить, что вселенная постоянно расширяется, а звезды «убегают» друг от друга. Также эффект Доплера позволяет определять параметры движения космических аппаратов и планет. Он же составляет основу действия радаров, которые используют сотрудники ГИБДД для автомобиля. Этим же эффектом пользуются медицинские специалисты, которые при помощи ультразвукового прибора отличают вены от артерий во время проведения инъекций.

Вы могли заметить, что высота звука сирены пожарной машины, движущейся с большой скоростью, резко падает после того, как эта машина пронесется мимо вас. Возможно, вы замечали также изменение высоты сигнала автомобиля, проезжающего на большой скорости мимо вас.
 Высота звука двигателя гоночного автомобиля тоже изменяется, когда он проезжает мимо наблюдателя. Если источник звука приближается к наблюдателю, высота звука возрастает по сравнению с тем, когда источник звука покоился. Если же источник звука удаляется от наблюдателя, то высота звука понижается. Это явление называется эффектом Доплера и имеет место для всех типов волн. Рассмотрим теперь причины его возникновения и вычислим изменение частоты звуковых волн, обусловленное этим эффектом.

Рис. 1
 Рассмотрим для конкретности пожарный автомобиль, сирена которого, когда автомобиль стоит на месте, испускает звук определенной частоты во всех направлениях, как показано на рис. 1. Пусть теперь пожарный автомобиль начал двигаться, а сирена продолжает испускать звуковые волны на той же частоте. Однако во время движения звуковые волны, испускаемые сиреной вперед, будут располагаться ближе друг к другу, чем в случае, когда автомобиль не двигался, что и показано на рис. 2.


рис. 2
 Это происходит потому, что в процессе своего движения пожарный автомобиль «догоняет» испущенные ранее волны. Таким образом, наблюдатель у дороги заметит большее число волновых гребней, проходящих мимо него в единицу времени, и, следовательно, для него частота звука будет выше. С другой стороны, волны, распространяющиеся позади автомобиля, будут дальше отстоять друг от друга, поскольку автомобиль как бы «отрывается» от них. Следовательно, за единицу времени мимо наблюдателя, находящегося позади автомобиля, пройдет меньшее количество волновых гребней, и высота звука будет ниже.
 Чтобы вычислить изменение частоты, воспользуемся рис. 3 и 4. Будем считать, что в нашей системе отсчета воздух (или другая среда) покоится. На рис. 3 источник звука (например, сирена) находится в покое.


 Показаны два последовательных гребня волны, причем один из них только что испущен источником звука. Расстояние между этими гребнями равно длине волны λ . Если частота колебаний источника звука равна f , то время, прошедшее между испусканиями волновых гребней, равно Т = 1/f .
 На рис. 4 источник звука движется со скоростью v ист . За время Т (оно только что было определено) первый гребень волны пройдет расстояние d = vT , где v − скорость звуковой волны в воздухе (которая, конечно, будет одна и та же независимо от того, движется источник или нет). За это же время источник звука переместится на расстояние d ист = v ист Т . Тогда расстояние между последовательными гребнями волны, равное новой длине волны λ / , запишется в виде
λ / = d − d ист = (v − v ист)T = (v − v ист)/f,
поскольку Т= 1/f .
 Частота f / волны дается выражением
f / = v/λ / = vf/(v − v ист),
или

Источник звука приближается к покоящемуся наблюдателю.
 Поскольку знаменатель дроби меньше единицы, мы имеем f / > f . Например, если источник создает звук на частоте 400 Гц , когда он находится в покое, то, когда источник начинает двигаться в направлении к наблюдателю, стоящему на месте, со скоростью 30 м/с , последний услышит звук на частоте (при температуре 0 °С ) 440 Гц .
 Новая длина волны для источника, удаляющегося от наблюдателя со скоростью v ист , будет равна
λ / = d + d ист.
При этом частота f / дается выражением

Источник звука удаляется от покоящегося наблюдателя.
 Эффект Доплера возникает также в том случае, когда источник звука покоится (относительно среды, в которой распространяются звуковые волны), а наблюдатель движется. Если наблюдатель приближается к источнику звука, то он слышит звук большей высоты, нежели испускаемый источником. Если же наблюдатель удаляется от источника, то звук кажется ему ниже. Количественно изменение частоты здесь мало отличается от случая, когда движется источник, а наблюдатель покоится. В этом случае расстояние между гребнями волны (длина волны λ ) не изменяется, а изменяется скорость движения гребней относительно наблюдателя. Если наблюдатель приближается к источнику звука, то скорость волн относительно наблюдателя будет равна v / = v + v набл , где v − скорость распространения звука в воздухе (мы предполагаем, что воздух покоится), а v набл − скорость наблюдателя. Следовательно, новая частота будет равна
f / = v / /λ = (v + v набл)/λ,
или, поскольку λ = v/f ,

Наблюдатель приближается к покоящемуся источнику звука.
 В случае же, когда наблюдатель удаляется от источника звука, относительная скорость будет равна v / = v − v набл , и мы имеем

Наблюдатель удаляется от покоящегося источника звука.

Если звуковая волна отражается от движущегося препятствия, то частота отраженной волны из-за эффекта Доплера будет отличаться от частоты падающей волны.

Рассмотрим это на следующем примере .

Пример . Звуковая волна с частотой 5000 Гц испускается в направлении к телу, которое приближается к источнику звука со скоростью 3,30 м/с . Чему равна частота отраженной волны?

Решение .
 В этом случае эффект Доплеpa проявляется два раза.
 Во-первых, тело, к которому направлена звуковая волна, ведет себя как движущийся наблюдатель и «peгистрирует» звуковую волну на частоте

 Во-вторых, тело затем действует как вторичный источник звука (отраженного), который движется, так что частота отраженной звуковой волны будет равна


 Таким образом, доплеровский сдвиг частоты равен 100 Гц .

Если падающую и отраженную звуковые волны наложить одна на другую, то возникнет суперпозиция, а это приведет к биениям. Частота биений равна разности частот двух волн, и в рассмотренном выше примере она равнялась бы 100 Гц . Такое проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в мегагерцевом диапазоне частот. Например, отраженные от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями.
 Следует заметить, что эффект Доплера лежит также в основе метода обнаружения с помощью радара автомобилей, которые превышают предписываемую скорость движения, но в этом случае используются электромагнитные (радио) волны, а не звуковые.
 Точность соотношений (1 − 2) и (3 − 4) снижается, если v ист или v набл приближаются к скорости звука. Это связано с тем, что смещение частиц среды уже не будет пропорционально возвращающей силе, т.е. возникнут отклонения от закона Гука, так что большинство наших теоретических рассуждений потеряет силу.

Решите следующие задачи .
Задача 1 . Выведите общую формулу для изменения частоты звука f / за счет эффекта Доплера в случае, когда как источник, так и наблюдатель движутся.

Задача 2 . В нормальных условиях скорость потока крови в аорте приблизительно равна 0,28 м/с . Вдоль потока направляются ультразвуковые волны с частотой 4,20 МГц . Эти волны отражаются от красных кровяных телец. Какова будет частота наблюдаемых при этом биений? Считайте, что скорость этих волн равна 1,5 × 10 3 м/с , т.е. близка к скорости звука в воде.

Задача 3 . Эффект Доплера для ультразвуковых волн на частоте 1,8 МГц используется для контроля частоты сердцебиений зародыша. Наблюдаемая частота биений (максимальная) равна 600 Гц . Считая, что скорость распространения звука в ткани равна 1,5 × 10 3 м/с , вычислите максимальную скорость поверхности бьющегося сердца.

Задача 4 . Звук заводского гудка имеет частоту 650 Гц . Если дует северный ветер со скоростью 12,0 м/с , то звук какой частоты будет слышать покоящийся наблюдатель, находящийся а) к северу, б) к югу, в) к востоку и г) к западу от гудка? Звук какой частоты будет слышать велосипедист, приближающийся со скоростью 15 м/с к гудку д) с севера или е) с запада? Температура воздуха равна 20 °С .

Задача 5 . Свисток, совершающий колебания на частоте 500 Гц , движется по окружности радиусом 1 м , делая 3 оборота в секунду. Определите наибольшую и наименьшую частоту, воспринимаемую неподвижным наблюдателем, находящимся на расстоянии 5 м от центра окружности. Скорость звука в воздухе принять равной 340 м/с .

– важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна - это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой , длиной и частотой . Звук, который мы слышим - это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе - добро пожаловать в нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера .


Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером , было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).


Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией .

Эффект Доплера также используют в оптике , акустике , радиоэлектронике , астрономии , радиолокации .

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.


Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с - скорость распространения волн в среде, w0 - частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с , v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у , и они охотно поделятся своим опытом! А в конце - еще немного про теорию Большого взрыва и эффект Доплера.

В акустике изменение частоты, обусловленное эффектом Доплера, определяется скоростями движения источника и приемника по отношению к среде, являющейся носителем звуковых волн (см. формулу (103.2)). Для световых волн также существует эффект Доплера. Однако особой среды, которая служила бы носителем электромагнитных волн, не существует. Поэтому доплеровское смещение частоты световых волн определяется только относительной скоростью источника и приемника.

Свяжем с источником света начало координат системы К, а с приемником - начало координат системы К (рис. 151.1). Оси направим, как обычно, вдоль вектора скорости v, с которой система К (т. е. приемник) движется относительно системы К (т е. источника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К иметь вид

Здесь и - частота волны, фиксируемая в системе отсчета, связанной с источником, т. е. частота, с которой колеблется источник. Мы предполагаем, что световая волна распространяется в вакууме; поэтому фазовая скорость равна с.

Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета. Следовательно, в системе К волна (151.1) описывается уравнением

где - частота, фиксируемая в системе отсчета К т. е. частота, воспринимаемая приемником. Мы снабдили штрихами все величины, кроме с, которая одинакова во всех системах отсчета.

Уравнение волны в системе К можно получить из уравнения в системе К, перейдя от с помощью преобразований Лоренца.

Заменив в и t согласно формулам (63.16) 1-го тома, получим

(роль играет v). Последнее выражение легко привести к виду

Уравнение (151.3) описывает в системе К ту же волну, что и уравнение (151.2). Поэтому должно выполняться соотношение

Изменим обозначения: частоту источника со обозначим через а частоту приемника - через . В результате формула примет вид

Перейдя от круговой частоты к обычной, получим

(151.5)

Фигурирующая в формулах (151.4) и (151.5) скоростью приемника по отношению к источнику есть величина алгебраическая. При удалении приемника и согласно при приближении приемника к источнику так что со

В случае, если формулу (151.4) можно приближенно записать следующим образом:

Отсюда, ограничившись членами порядка получим

(151.6)

Из этой формулы можно найти относительное изменение частоты:

(151.7)

(под подразумевается ).

Можно показать, что, кроме рассмотренного нами продольного эффекта, для световых волн существует также поперечный эффект Доплера. Он заключается в уменьшении воспринимаемой приемником частоты, наблюдающемся в том случае, когда вектор относительной скорости направлен перпендикулярно к прямой, проходящей через приемник, и источник (когда, например, источник движется по окружности, в центре которой помещаемся приемник).

В этом случае частота в системе источника связана с частотой со в системе приемника соотношением

Относительное изменение частоты при поперечном эффекте Доплера

пропорционально квадрату отношения и, следовательно, значительно меньше, чем при продольном эффекте, для которого относительное изменение частоты пропорционально первой степени

Существование поперечного эффекта Доплера было доказано экспериментально Айвсом в 1938 г. В опытах Айвса определялось изменение частоты излучения атомов водорода в каналовых лучах (см. последний абзац § 85). Скорость атомов составляла примерно 106 м/с. Эти опыты представляют собой непосредственное экспериментальное подтверждение справедливости преобразований Лоренца.

В общем случае вектор относительной скорости можно разложить на две составляющие, одна из которых направлена вдоль луча, а другая - перпендикулярно к лучу. Первая составляющая обусловит продольный, вторая - поперечный эффект Доплера.

Продольный эффект Доплера используется для определения радиальной скорости звезд. Измерив относительное смещение линий в спектрах звезд, можно по формуле (151.4) определить

Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекул относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от до где - частота, излучаемая молекулами, v - скорость теплового движения (см. формулу (151.6)). Таким образом, регистрируемая ширина спектральной линии составит Величину

(151.10)

называют доплеровской шириной спектральной линии (под v подразумевается наиболее вероятная скорость молекул). По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а следовательно, и о температуре светящегося газа.

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.



Новое на сайте

>

Самое популярное