Домой Десны Закон сохранения массы веществ. Химические уравнения

Закон сохранения массы веществ. Химические уравнения

Урок №14. Закон сохранения массы вещества. Химические уравнения

Закон сохранения массы веществ

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

Чтобы ответить на данный вопрос пронаблюдайте за следующим экспериментом

Видео-эксперимент: .

Описание эксперимента: В коническую колбу помесите 2 грамма измельченной меди. Плотно закройте колбу пробкой и взвесьте. Запомните массу колбы. Осторожно нагревайте колбу в течение 5 минут и наблюдайте за происходящими изменениями. Прекратите нагревание, и когда колба охладится, взвесьте её. Сравните массу колбы до нагревания с массой колбы после нагревания.

Вывод: Масса колбы после нагревания не изменилась.

Пронаблюдаем за другими видео-экспериментами:

Вывод: Масса веществ до и после реакции не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Химические уравнения

Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

Посмотрим видео - эксперимент : .

В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Fe + S = FeS

Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2 . Между реагентами ставим знак «+», а затем стрелку:

P + O 2

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O 2 → P 2 O 5

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

    Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.

    В данном случае это атомы кислорода.

    Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

    Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:

    Закон сохранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:

    Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:

4 P + 5O 2 = 2P 2 O 5

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

1.

Преобразуйте следующие схемы в уравнения химических реакций расставив необходимые коэффициенты и заменив стрелки на знак равенства:

Zn + O 2 → ZnO

Fe + Cl 2 → FeCl 3

Mg + HCl → MgCl 2 + H 2

Al(OH) 3 → Al 2 O 3 + H 2 O

HNO 3 → H 2 O+NO 2 +O 2

CaO+H 2 O→ Ca(OH) 2

H 2 +Cl 2 → HCl

KClO 3 → KClO 4 +KCl

Fe(OH) 2 +H 2 O+O 2 → Fe(OH) 3

KBr + Cl 2 KCl + Br 2

2.

Используя алгоритм составления уравнений химических реакций, составьте уравнения реакций взаимодействия между следующими парами веществ:
1) Na и O 2
2) Na и Cl
2
3) Al и S

Урок по теме

«ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВ.

УРАВНЕНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ»

Предлагаю разработку урока в 8-м классе по программе О. С. Габриеляна.

Цели урока: сформировать представления о законе сохранения массы веществ, выработать умения применять его, объяснить сущность химических реакций и процесса составления уравнений химических реакций, формировать умения выявлять существенное, делать выводы, устанавливать межпредметные связи, развивать экспериментальные умения, формировать мировоззренческие понятия о познаваемости природы.

Эпиграф к уроку:

Опыт!

Скажи, чем гордишься ты?

Что ты такое?

Ты плод ошибок и слез,

Силам потраченным счет.

Всюду: «Что нового?» - слышишь.

Да вдумайся в старое прежде!

В нем для себя найдешь ты нового много!

А. Майков

Урок начинаем с повторения домашнего задания, актуализации знаний о физических и химических явлениях с помощью творческого домашнего задания и отрывков из произведений художественной литературы.

В качестве домашнего задания к данному уроку учащимся было предложено нарисовать физические и химические явления: фотосинтез, кипение чайника, ржавление гвоздя, горение костра, таяние мороженого, горение электролампочки, сгибание гвоздя, растворение сахара, движение маятника часов, приготовление яичницы, звонок с урока и т. д. По рисункам одноклассников учащиеся определяют, какое это явление.

Люблю грозу в начале мая,

Когда весенний первый гром,

Как бы резвяся и играя,

Грохочет в небе голубом.

Ф. И. Тютчев.Весенняя гроза

Последняя туча рассеянной бури!

Одна ты несешься по ясной лазури,

Одна ты наводишь унылую тень,

Одна ты печалишь ликующий день.

А. С. Пушкин. Туча

Мой костер в тумане светит:

Искры гаснут на лету...

Я. П. Полонский. Песни цыганки

Шалун уж заморозил пальчик,

Ему и больно и смешно,

А мать грозит ему в окно...

А. С. Пушкин. Евгений Онегин

Вот уж вечер.

Роса Блестит на крапиве.

Я стою у дороги,

Прислонившись к иве.

От луны свет большой

Прямо на нашу крышу.

Где-то песнь соловья

Вдалеке я слышу.

С. А. Есенин. Вот уже вечер. Роса...

Актуализацию знаний ключевых терминов, понятий проводим в форме устного опроса или диктанта. Перечень проверяемых понятий: химическое явление, физическое явление, индекс, коэффициент, уравнение химической реакции, химическая формула, признаки и условия химических реакций, реакции обмена, замещения, соединения, разложения.

Затем переходим к изучению нового материала. За уравнениями химических реакций скрывается удивительный и до конца еще не познанный мир. Для того чтобы продвинуться по пути его понимания, необходимо провести эксперимент. Проводим инструктаж по правилам безопасности при работе со стеклом, нагревании.

Задание: проведите указанные реакции, расскажите о своих наблюдениях.

Учащихся предварительно делим на четыре группы по уровню обученное™ (при помощи психолога). Участники каждой группы получают карточки-инструкции.

1. Сжигание фосфора в закрытом сосуде

В круглодонную колбу положите немного красного фосфора (с горошину), закройте колбу пробкой, взвесьте. Затем колбу нагрейте (в том месте, где находится фосфор). После протекания химической реакции колбу охладите и повторно взвесьте.

Изменилась ли масса колбы? Напишите уравнение реакции окисления фосфора до оксида фосфора (V). Укажите тип реакции, назовите условия и признаки реакции.

2. Разложение основного карбоната меди(Н)

В пробирку положите немного соли (СuОН) 2 СO 3 . В колбу налейте 30-40 мл известковой воды. Прибор, состоящий из пробирки с солью, пробки с газоотводной трубкой и колбы с известковой водой, взвесьте. Нагрейте пробирку с основным карбонатом меди (II), газоотводная трубка должна быть опущена в известковую воду. После охлаждения пробирки прибор вновь взвесьте.

Изменилась ли масса прибора? Напишите уравнение реакции разложения соли (СuОН) 2 СO 3 до оксида углерода (IV), оксида меди (II) и воды. Укажите тип реакции, назовите условия и признаки реакции.

3. Реакция между растворами сульфата натрия и хлорида бария

На весах уравновесьте сосуд Ландольта, в одном колене которого находится раствор сульфата натрия, а в другом - хлорида бария. Слейте растворы. Произошла химическая реакция.

Изменилась ли масса веществ до и после реакции? Напишите уравнение, укажите тип реакции, назовите условия и признаки реакции.

4. Реакция между растворами щелочи и сульфата меди (II)

На весах уравновесьте два химических стакана с растворами сульфата меди (II) и гидроксида натрия. Слейте растворы.

Нарушилось ли равновесие весов? Напишите уравнение реакции, укажите тип реакции, назовите условия и признаки реакции.

Учащиеся выполняют эксперимент согласно инструкции, делают соответствующие записи в тетрадях.

Сообщаем, что опыт, который выполняла первая группа, является аналогом исторического эксперимента, проведенного М. В. Ломоносовым. Демонстрируем портрет ученого, заслушиваем доклад ученика о жизни и деятельности М. В. Ломоносова.

Обращаем особое внимание учащихся на то, что М. В. Ломоносов впервые в истории науки сформулировал один из основных законов природы - закон сохранения материи. Он писал: «Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому... Сей всеобщий естественный закон простирается и в самые правила движения...». Подчеркивая выдающиеся заслуги Ломоносова, говорим, что лучший памятник великому ученому - наши знания.

Учащиеся записывают в тетрадях современную формулировку закона сохранения массы веществ при химических реакциях.

В качестве закрепления знаний предлагаем выполнить несколько заданий, затем организуем самооценку - проецируем на доску ответы через кодоскоп.

Предлагаем учащимся дома написать мини-сочинение на тему «Химические явления за окном».


12.02.2015 5575 688 Хайрулина Лилия Евгеньевна

Цель урока: сформировать понятие закона сохранения масс, научить составлять уравнения реакций
Задачи урока:
Образовательная: опытным путём доказать и сформулировать закон сохранения массы веществ.
Развивающая: дать понятие о химическом уравнении как об условной записи химической реакции с помощью химических формул; начать формирование навыков составления химических уравнений
Воспитательная: привить интерес к химии, расширить кругозор

Ход урока
I. Орг.момент
II. Опрос фронтальный:
- Что такое физические явления?
- Что такое химические явления?
- Примеры физ и хим явлений
- Условия протекания химических реакций
III. Изучение нового материала

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.
С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.
Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.
Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Химические уравнения
Закон сохранения массы веществ применяется при составлении уравнений химических реакций.
Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.
Посмотрим видео - эксперимент: Нагревание смеси железа и серы.
В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.
Исходные вещества, принимающие участие в химических реакциях называются реагентами.
Новые вещества, образующиеся в результате химической реакции называются продуктами.
Запишем протекающую реакцию в виде уравнения химической реакции:
Fe + S = FeS
Алгоритм составления уравнения химической реакции
Составим уравнение химической реакции взаимодействия фосфора и кислорода
1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H2; N2; O2; F2; Cl2; Br2; I2. Между реагентами ставим знак «+», а затем стрелку:
P + O2 →
2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O2 → P2O5

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.
Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.
В данном случае это атомы кислорода.
Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:
Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:
Закон сохранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:
Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:
4P + 5O2 = 2P2O5

IV. Закрепление
V. Д/з

Скачать материал

Полный текст материала смотрите в скачиваемом файле.
На странице приведен только фрагмент материала.

Слайд 2

Единственный путь, ведущий к знанию, - это деятельность.

Цели урока: Обучающие - экспериментально доказать закон сохранения массы веществ. На основе этого закона сформировать понятие о материальном балансе химической реакции. Сформировать понятие об уравнении химической реакции как об условной записи, отображающей превращения веществ. Развивающие- развивать умения ставить несложные проблемы, формулировать гипотезы и проводить их опытную проверку; совершенствовать умения работать с лабораторным оборудованием и реактивами; развивать способность к логическому мышлению. Воспитательные - продолжить формирование научного мировоззрения учащихся; воспитывать коммуникативную компетентность, а также наблюдательность, внимание, инициативу. На примере жизни и деятельности М. В. Ломоносова воспитывать интерес к изучению химии.

Слайд 3

Открытие закона сохранения массы веществ

1789г. Роберт Бойль 1673г. 1748г. М. В. Ломоносов Антуан Лавуазье

Слайд 4

Бойль проделал множество опытов по прокаливанию металлов в запаянных ретортах и всякий раз масса окалины оказывалась больше массы прокаливаемого металла.

Слайд 5

Слайд 6

Русский учёный М.В. Ломоносов предположил, что чувственный опыт обманывает нас. 5 июля 1748 года он написал в письме Леонарду Эйлеру:

Слайд 7

«Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимется, столько же присовокупится к другому. Так, ежели где убудетматерии, то умножится в другом месте; сколько часов положит кто на бдение, столько же сну отнимет...»

Слайд 8

«Масса веществ, вступивших в реакцию, равна массе образовавшихся веществ в результате реакции» - современная формулировка закона сохранения массы веществ.

Слайд 9

Слайд 10

Лишь в 1756 году Ломоносову удалось проверить опытным путём теоретически открытый закон сохранения массы веществ. Подобно Бойлю русский учёный делал опыт в запаянных ретортах. Но, в отличие от Бойля, Ломоносов взвешивал сосуды как до, так и после прокаливания не вскрывая.

Слайд 11

Слайд 12

Значительно позже этот закон,независимо от М.В. Ломоносова,был открыт французским ученым А.Лавуазье.

Слайд 13

Слайд 14

Химическая формула – условная запись состава вещества с помощью химических знаков и индексов. Индекс показывает число атомов в формульной единице вещества. Коэффициент показывает число несоединенных друг с другом частиц 5Н2О Коэффициент Химическая формула Индекс На основании данного закона составляют уравнения химических реакций с помощью химических формул, коэффициентов и математических знаков.



Новое на сайте

>

Самое популярное