Домой Протезирование и имплантация Устройство турбины гидроэлектростанции мощностью 300 ква. Источник энергии гидроэлектростанции

Устройство турбины гидроэлектростанции мощностью 300 ква. Источник энергии гидроэлектростанции

Многообразие вариантов и уникальность технических решений применяемых при строительстве гидроэлектростанций поражает воображение. На самом деле, не так легко найти две одинаковые станции. Но всё же существует их классификация, основанная на определённых признаках - критериях.

Способ создания напора

Пожалуй, самый очевидный критерий - способ создания напора :

  • русловая гидроэлектростанция (ГЭС);
  • деривационная гидроэлектростанция;
  • гидроаккумулирующая электростанция (ГАЭС);
  • приливная электростанция (ПЭС).

Между этими четырьмя основными видами гидроэлектростанций есть характерные отличия. Речная гидроэлектростанция располагается на реке, перекрывая плотиной её течение для создания напора и водохранилища. Деривационная ГЭС обычно располагается на извилистых горных реках, где можно соединить рукава реки водоводом чтобы пустить часть потока по более короткому пути. Напор при этом создаётся естественным перепадом рельефа местности, а водохранилище может и вовсе отсутствовать. Гидроаккумулирующая электростанция представляет собой два бассейна, располагающихся на разных уровнях. Бассейны соединены водоводами, по которым вода может перетекать в нижний бассейна из верхнего и перекачиваться обратно. Приливная электростанция располагается в заливе, перекрытом плотиной для создания водохранилища. В отличии от гидроаккумулирующей электростанции рабочий цикл ПЭС зависит от явления приливов/отливов.

Величина напора

По величине напора, создаваемого гидротехническим сооружением (ГТС) гидроэлектростанции делятся на 4 группы:

  • низконапорные - до 20 м;
  • средненапорные - от 20 до 70 м;
  • высоконапорные - от 70 до 200 м;
  • сверхвысоконапорные - от 200 м.

Стоить отметить что классификация по величине напора носит относительный характер и разнится от одного источника к другому.

Установленная мощность

По установленной мощности станции - сумме номинальных мощностей генерирующего оборудования установленного на ней. Эта классификация имеет 3 группы:

  • микро-ГЭС - от 5 кВт до 1 МВт;
  • малые ГЭС - от 1 кВт до 10 МВт;
  • крупные ГЭС - свыше 10 МВт.

Классификация по установленной мощности также как и по величине напора, не является строгой. Одну и ту же станцию в разных источниках могут относить к разным группам.

Конструкция плотины

Существует 4 основных группы плотин гидроэлектростанций:

  • гравитационная;
  • контрфорсная;
  • арочная;
  • арочно-гравитационная.

Гравитационная плотина представляет собой массивную конструкцию удерживающую воду в водохранилище за счёт своего веса. Контрфорсная плотина использует несколько другой механизм – свой относительно небольшой вес она компенсирует весом воды, давящей на наклонную грань плотины со стороны верхнего бьефа. Арочная плотина , пожалуй самая изящная, имеет форму арки, упирающейся основанием в берега и округлой частью выпуклой в сторону водохранилища. Удержание воды у арочной плотины происходит за счёт перераспределения давления с фронта плотины на берега реки.

Расположение машинного зала

Точнее, по расположению машинного зала относительно плотины , не путать с компоновкой! Эта классификация имеет значение только для русловых, деривационных и приливных электростанций.

  • руслового типа;
  • приплотинного типа.

При русловом типе машинный зал располагается непосредственно в теле плотины, приплотинной типе - возводится отдельно от тела плотины и обычно располагается сразу за ним.

Компоновка

Под словом "компоновка" в данном контексте подразумевается расположение машинного зала относительно русла реки. Будьте внимательны при чтении другой литературы на эту тему, потому как слово компоновка имеет более широкое значение. Классификация справедлива только для русловых и деривационных электростанций.

  • русловая;
  • пойменная;
  • береговая.

При русловой компоновке здание машинного зала располагается в русле реки, пойменной компоновке - в пойме реки, а при береговой компоновке - на берегу реки.

Зарегулированность

А именно степень зарегулированности стока реки. Классификация имеет значение только для русловых и деривационных гидроэлектростанций.

  • суточного регулирования (цикл работы - одни сутки);
  • недельного регулирования (цикл работы - одна неделя);
  • годичного регулирования (цикл работы - один год);
  • многолетнего регулирования (цикл работы - несколько лет).

Классификация отражает насколько велико водохранилище гидроэлектростанции по отношению к объему годового стока реки.

Все приведённые критерии не являются взаимно исключаемыми, то есть одна и та же ГЭС может быть речного типа, высоконапорной, средней мощности, русловой компоновки с машинным залом приплотинного типа, арочной плотиной и водохранилищем годичного регулирования.

Список использованных источников

  1. Брызгалов, В.И. Гидроэлектростанции: учеб. пособие / В.И. Брызгалов, Л.А. Гордон - Красноярск: ИПЦ КГТУ, 2002. - 541 с.
  2. Гидротехнические сооружения: в 2 т. / М.М. Гришин [и др.]. - Москва: Высшая школа, 1979. - Т.2 - 336 с.
Опубликовано: 21 июля 2016 Просмотров: 4.5k

Гидроэлектрические станции или в гидроэлектростанциях используется потенциальная энергия воды рек и является на сегодняшний день распространенным средством производства электроэнергии из возобновляемых источников.

Гидроэлектростанции поставляют более чем 16% мировой электроэнергии (99% в Норвегии, 58% в Канаде, 55% в Швейцарии, 45% в Швеции, 7% в США, 6% в Австралии) из более чем 1060 ГВт установленной мощности. Половина этих мощностей находится в пяти странах: Китай (212 ГВт), Бразилия (82,2 ГВт), США (79 ГВт), Канада (76,4 ГВт) и Россия (46 ГВт). Помимо этих четырех стран с относительным обилием (Норвегия, Канада, Швейцария и Швеция), гидропотенциал обычно применяется при пиковой нагрузке, потому что гидроэлектростанция легко может быть остановлена и запущена. Это также означает, что она является идеальным дополнением к в сетке системы и используется наиболее эффективно в Дании.

Гидроэлектростанции используют энергию падающей воды для выработки электроэнергии. Турбина преобразует кинетическую силу падающей H2O в механическую. Затем генератор преобразует механическую из турбины в электроэнергию.

Гидроэнергетика в мире

Гидроэнергетика использует большие площади и не является основным вариантом на будущее в развитых странах потому, что большинство крупных мест в этих странах, имеющих потенциал для освоения гидроэнергетики, либо уже эксплуатируются или недоступны по другим причинам, например из экологических соображений. Главным образом в Китае и Латинской Америке ожидается рост гидроэнергетики до 2030 года. Китай в последние годы ввел в эксплуатацию на $26 млрд гидроэлектростанций, которые производят 22,5 ГВт. Гидроэнергетика в Китае сыграла определенную роль переместив свыше 1,2 миллиона человек с мест расположения плотин.

Главным преимуществом гидросистем является их способность обрабатывать сезонные (а также ежедневные) высокие пиковые нагрузки. На практике использование хранимой энергии воды иногда осложняется требованиями для орошения, которые могут произойти в противофазе с пиком нагрузок.

Запуск из реки гидросистем обычно гораздо дешевле, чем создание плотин и имеет потенциально более широкое применение. Мелкие гидроэлектростанции под 10 МВт представляют около 10% мирового потенциала и большинство из них работают из реки.

Существует три типа гидроэнергетических сооружений: гидроэлектростанции, насосные станции, гидроаккумулирующие электростанции.

Принцип работы гидроэлектростанции

Принцип работы гидроэлектростанции когда энергия воды преобразуется в механическую через гидравлические турбины. Генератор преобразует эту механическую энергию воды в электричество.

Работа генератора основана на принципах Фарадея: когда магнит перемещается мимо проводника то вырабатывается электроэнергия. В генераторе электромагниты созданы текущим постоянным током. Они создают поля полюсов и установлены по периметру ротора. Ротор присоединен к валу который вращают турбины на фиксированной скорости. Когда ротор вращается, это вызывает смену полюсов в проводнике, смонтированном в статоре. Это, в свою очередь, по закону Фарадея вырабатывает электричество на выводах генератора.

Состав гидроэлектростанции

Мощность гидроэлектростанций варьируется в размерах от «микро ГЭС» питающую несколько домов до гигантских плотин, которые обеспечивают электроэнергией миллионы людей.

Большинство обычных ГЭС включают в себя четыре основных компонента:


Использование гидроэнергии достигло пика в середине 20-го века, но идея использования H2O для выработки электроэнергии насчитывает тысячи лет. Более чем 2000 лет назад, греки использовали водяное колесо для помола пшеницы в муку. Эти древние колеса, как турбины сегодня, через которые идет поток воды.

Гидроэнергетические станции крупнейший источник возобновляемой энергии мира.

Что такое гидроэлектростанция?

Гидроэлектростанции являются весьма эффективными источниками энергии. Они используют возобновимые ресурсы - механическую энергию падающей воды. Необходимый для этого подпор воды создается плотинами, которые воздвигают на реках и каналах. Гидравлические установки позволяют сокращать перевозки и экономить минеральное топливо (на 1 кВт-ч расходуется примерно 0,4 т угля). Они достаточно просты в управлении и обладают очень высоким коэффициентом полезного действия (более 80%). Себестоимость этого типа установок в 5-6 раз ниже, чем ТЭС, и они требуют намного меньше обслуживающего персонала.

Гидравлические установки представлены гидроэлектростанциями (ГЭС), гидроаккумулирующими электростанциями (ГАЭС) и приливными электростанциями (ПЭС). Их размещение во многом зависит от природных условий, например, характера и режима реки. В горных районах обычно возводятся высоконапорные ГЭС, на равнинных реках действуют установки с меньшим напором, но большим расходом воды. Гидростроительство в условиях равнин сложнее из-за преобладания мягких оснований под плотинами и необходимости иметь крупные водохранилища для регуляции стока. Сооружение ГЭС на равнинах вызывает затопление прилегающих территорий, что приносит значительный материальный ущерб.

ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Напор ГЭС создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Основное энергетическое оборудование гидроэлектростанции размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3/сек), используемого в гидротурбинах, и кпд гидроагрегата hг. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м) гидроэлектростанции. На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных - поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных - поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых гидроэлектростанциях иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м; к простейшим русловым ГЭС относятся также ранее строившиеся сельские (гидроэлектростанции)ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС - наиболее крупная среди станций руслового типа.

Самые мощные ГЭС сооружены на Волге, Каме, Ангаре, Енисее, Оби и Иртыше. Каскад гидроэлектростанций представляет собой группу ГЭС, расположенных ступенями по течению водного потока с целью полного последовательного использования его энергии. Установки в каскаде обычно связаны общностью режима, при котором водохранилища верхних ступеней регулирующе влияют на водохранилища нижних ступеней. На основе ГЭС восточных районов формируются промышленные комплексы, специализирующиеся на энергоемких производствах.

В Сибири сосредоточены наиболее эффективные по технико-экономическим показателям ресурсы. Одним из примеров этого может служить Ангаро-Енисейский каскад, в состав которого входят самые крупные гидроэлектростанции страны: Саяно-Шушенская (6,4 млн. кВт), Красноярская (6 млн. кВт), Братская (4,6 млн. кВт), Усть-Илимская (4,3 млн. кВт). Строится Богучановская ГЭС (4 млн. кВт). Общая мощность каскада в настоящее время - более 20 млн. кВт.

При сооружении ГЭС обычно преследуют цель: выработки электроэнергии, улучшения условий судоходства по реке и орошения земель. ГЭС обычно имеют водохранилища, позволяющие запасать воду и регулировать ее расход и, следовательно, рабочую мощность станции так, чтобы обеспечить наиболее выгодный режим для энергосистемы в целом.

Процесс регулирования заключается в следующем. В период времени, когда нагрузка энергосистемы мала (или естественный приток воды в реке велик), гидроэлектростанция расходует воду в количестве, меньшем естественного притока. При этом вода накапливается в водохранилище, а рабочая мощность станции относительно мала. В другой период времени, когда нагрузка системы велика (или приток воды мал), гидроэлектростанция расходует воду в количестве, превышающем естественный приток. При этом расходуется вода, накопленная в водохранилище, а рабочая мощность станции увеличивается до максимальной. В зависимости от объема водохранилища период регулирования или время, необходимое для наполнения и срабатывания водохранилища, может составлять сутки, неделю, несколько месяцев и более. В течение этого времени гидроэлектростанция может израсходовать строго определенное количество воды, определяемое естественным притоком.

При совместной работе гидроэлектростанций с тепловыми и атомными станциями нагрузку энергосистемы распределяют между ними так, чтобы при заданном расходе воды в течение рассматриваемого периода обеспечить спрос на электрическую энергию с минимальным расходом топлива (или минимальными затратами на топливо) в системе. Опыт эксплуатации энергосистем показывает, что в течение большей части года гидроэлектростанции целесообразно использовать в пиковом режиме. Это означает, что в течение суток рабочая мощность гидроэлектростанции должна изменяться в широких пределах - от минимальной в часы, когда нагрузка энергосистемы мала, до максимальной в часы наибольшей нагрузки системы. При таком использовании гидроэлектростанции нагрузка тепловых станций выравнивается и работа их становится более экономичной.

В периоды паводка, когда естественный приток воды в реке велик, целесообразно использовать гидроэлектростанции круглосуточно с рабочей мощностью, близкой к максимальной, и таким образом уменьшить холостой сброс воды через плотину. Наиболее выгодный режим гидроэлектростанции зависит от множества факторов и должен быть определен соответствующим расчетом.

Работа гидроэлектростанций характеризуется частыми пусками и остановами агрегатов, быстрым изменением рабочей мощности от нуля до номинальной. Гидравлические турбины по своей природе приспособлены к такому режиму. Для гидрогенераторов этот режим также приемлем, так как в отличие от паротурбинных генераторов осевая длина гидрогенератора относительно мала и температурные деформации стержней обмотки проявляются меньше. Процесс пуска гидроагрегата и набора мощности полностью автоматизирован и требует всего несколько минут.

Продолжительность использования установленной мощности гидроэлектростанций, как правило, меньше, чем тепловых электростанций. Она составляет 1500-3000 ч для пиковых станций и до 5000-6000 ч для базовых.

Удельная стоимость гидростанции (руб/МВт) выше удельной стоимости тепловой станции той же мощности вследствие большего объема строительных работ. Время сооружения гидроэлектростанции также больше времени сооружения тепловой станции. Однако себестоимость электроэнергии, вырабатываемой гидроэлектростанциями, значительно ниже себестоимости энергии тепловых станций, так как в состав эксплуатационных расходов не входит стоимость топлива.

Гидростанции целесообразно строить на горных и полуторных реках. На равнинных реках их сооружение может приводить к затоплению больших площадей пойменных лугов и пахотных земель, лесов, снижению рыбных запасов и другим последствиям.



Малые гидротурбины весьма специфичны в принципе своего действия в отличие от турбин обычных ГЭС. Процесс работы микро гидротурбины интересен тем, что свойства ее строения могут обеспечить под конкретный объект тот объем водных масс, который будет поступать на части гидротурбины (лопасти), приводить в рабочее состояние генератор (генератор играет роль выработки электроэнергии).


Процесс усиления напора воды обеспечивается образованием «деривации» - сходов воды в свободном течении (при условии, что эта микро ГЭС деривационного типа) или плотиной (условие – мини ТЭС по типу плотины).

Мощность мини ГЭС

Уровень мощности мини ГЭС напрямую зависит от условий, в которых ее гидротехнические свойства находятся:

  1. Расход воды – это тот объем водных масс (л), который проходит через турбину за определенный промежуток времени. Принято за этот промежуток принимать 1-2 секунды.
  2. Напор воды – расстояние между двумя противоположными точками водной массы (одна расположена вверху, другая в нижней части). Напор имеет ряд характерных особенностей, от которых зависят и виды микро ГЭС (высокий напор, средний напор, низкий напор)

Особенность работы микро ГЭС оценивается с точки зрения ее территориального размещения. Например, напорная микро ГЭС осуществляет работу по типу отведения водных потоков по особому каналу, сделанному из дерева, находящегося под определенным углом наклона, что позволяет воде быстрее протекать. Напор воды в таком ГЭС зависит от того, насколько этот канал длинный. Далее вода перетекает в напорный трубопровод, после чего попадает в гидроагрегат, который располагается в нижней части. Затем переработанная вода путем выдавливания направляется обратно место истока.

Расположение мини ГЭС

Важно заметить, что положение гидротурбины в зависимости от вида построения может быть разным:

  1. Горизонтальное положение. Такое положение гидротурбины приводит к естественному увеличению размеров самой мини ГЭС (с помощью турбинного вала, который так же увеличивает размер, системы энергии при вращении, а так же изменение масштабов машинного зала). Однако стоит отметить, что строительство подобных гидротурбин не является более сложным в сравнении с остальными, а даже наоборот, упрощает его.
  2. Вертикальное расположение. Данный вид расположения способствует уменьшению размеров ГЭС, позволяет улучшить баланс осевых линий, ее компактности. Такое размещение более сложное в построении, так как создается необходимость детального баланса оси во вращательном элементе. Так же в такой ситуации важно более тщательно отнестись к обязательному положению рабочего пола, когда он будет в одну горизонтальную линию и его прочностных характеристик, что бы они были в состоянии выдержать вес всего построения. Вертикальное расположение усиливает давление на ось конструкции.

Применение мини ГЭС

В общем и целом установки малых ГЭС используются в основном для применения их в отдаленных районах жилых объектов. Они не могу являться серьезными конкурентами крупным электростанциям, а скорее служат для обеспечения экономии энергии. С недавних пор количество людей, использующих , как гидроэлектростанции, батареи солнечного типа и различные установки ветряного регулирования. Турбины, описываемые в этой статье в скором времени могут стать единым целым с этими новаторскими источниками энергии, что в итоге приведет к созданию новых электрических схем и моделей.


Для чего могут быть использованы данные сооружения?

  • для обеспечения электроэнергией объектов частной собственности;
  • для отдаленных промышленных районов;
  • для электрических зарядных станций;
  • для временного использования.

Преимущества мини ГЭС

У малых ГЭС есть ряд особых преимуществ:

  • они выпускаются в двух вариантах: закрепленные на дне водоема, а так же с особыми крючками, которые позволяют проводить работы на поверхности
  • установка может достигать мощности, равной 5 КВ, дабы увеличить мощность и КПД ГЭС турбины устанавливаются как модули
  • ГЭС негативно никак не влияют на окружающую среду в процесс строительства, т.к. для ее создания используется природная вода, которая направляется в определенный поток и приводит в движение лопасти.

Турбины для мини ГЭС

Теперь поговорим непосредственно о гидротурбинах для мини ГЭС и о том, что нам необходимо для ее строительства. Характеристики и особенности эксплуатации гидротурбины:

  1. Температура воды, которая подается в турбину, должна превышать +4 °С.
  2. Температура, которая должна быть в блоковом модуле +15 °С и выше.
  3. Звуковое давление, источник которого находится за 1 м от гидротурбины, составляет 80 дБ и не более.
  4. Наружная поверхность гидротурбины должна быть разогрета до температуры не выше +45°С при условии, что температура воздуха вокруг +25°С.

Рассмотрим пример хорошо сбалансированной и работающей гидротурбиной в идеальных условиях.

Допустим, что мы имеем проточную гидротурбину, радиальную, напоростурйную со средним напором, которая обеспечивает тангенциальную подачу воды на лопасти, вал горизонтальный. Такие типы труб относят к классу «тихих». Они имеют особенность приспособления к окружающей среде, месту установки и различным перепадам высотных давлений. Если расход воды резко меняется, то в турбине применяется конструкция двухкамерного мешка, что делает работу устройства более качественной.

Корпус любой гидротурбины изготавливается из стали конструкционного типа, она прочная и надежная. Затраты на материалы, строительство значительно снижены по сравнению с гидротурбинами для обычных ГЭС. Самый распространенный материал, используемый для строительства гидротурбины, будет выдерживать перепады от 90 до 120 метров, некоторые детали изготавливаются из нержавеющей стали (корпус, трубопроводы).

В гидротурбинах нового поколения есть возможность заменять генератор и рабочее колесо без сильной деформации и перебирания. Стоит отметить, что рабочее колесо имеет свойство самоочищаться благодаря водным потокам, которые в процессе своей работы проходят через область рабочего колеса. Во время проектирования генератора и самой гидротурбины принимается рад мер, позволяющий снизить кавитационный уровень. Нынешние гидротурбины на 100 процентов лишены этой проблемы.

Главная часть гидротурбины – это рабочее колесо. Материалом для изготовления лопаток зачастую является сталь профильного типа. Лопатки в силу своих свойств могу создавать усилие осевого уровня, облегчая работу подшипникам, а сами рабочие колеса находятся на постоянном балансе. Продолжительность работы оси рабочего колеса определяется ее положением, для более долгой работы ее устанавливают на подшипниковый уровень.

Особенности гидротурбин для мини ГЭС

  1. Могут быть использованы в системах очистки для получения качественной питьевой воды.
  2. Возможно подключение промышленного генератора.
  3. Повышенные требования к надежности генератора.

Некоторые характеристики технического плана:

  1. Перепад высот: 3 - 200 м
  2. Водорасход: 0,03 - 13 кубических метра в секунду
  3. Мощность: 5 - 3 000 кВт
  4. Число лопаток, расположенных на осевом секторе: 37
  5. КПД: 84% - 87%

Конечно, мини ГЭС вряд ли смогут стать основным источником энергии, однако их использование вполне целесообразно в качестве средства уменьшения нагрузки на основную питающую энергосеть, особенно в периоды пикового потребления.

Гидроэлектростанция - это комплекс сложных гидротехнических сооружений и оборудования. Его назначение - преобразовывать энергию потока воды в электрическую энергию. Гидроэнергия относится к числу так называемых возобновляемых источников энергии, т. е. практически неиссякаема.

Важнейшее гидротехническое сооружение - плотина . Она задерживает воду в водохранилище, создает необходимый напор воды. Гидравлическая турбина - главный двигатель на ГЭС. С ее помощью энергия воды, движущейся под напором, превращается в механическую энергию вращения, которая затем (благодаря электрическому генератору) преобразуется в электрическую энергию. Гидравлическая турбина , гидрогенератор, устройства автоматического контроля и управления - пульты размещены в машинном зале ГЭС. Повышающие трансформаторы могут располагаться и внутри здания, и на открытых площадках. Распределительные устройства чаще всего устанавливаются на открытом воздухе рядом со зданием электростанции.

В Советском Союзе, обладающем большими гидроэнергоресурсами (11112% от мировых), развернуто широкое строительство гидростанций. По установленной мощности гидроэлектриций. Только за 30 послевоенных лет, с 1950 станции подразделяют на малые - по 1980 год, выработка электроэнергии на до 5 МВт, средние - от 5 до 25 и крупные - ГЭС выросла более чем в 10 раз. свыше 25 МВт. В нашей стране действуют 20 ГЭС, на каждой из которых установленная мощность превышает 500 МВт. Крупнейшие из них - Красноярская (6000 МВт) и Саяно-Шушенская (6400 МВт) ГЭС.

Строительство ГЭС немыслимо без комплексного решения многих задач. Надо удовлетворять нужды не только энергетики, но и водного транспорта , водоснабжения, ирригации, рыбного хозяйства. Лучше всего этим задачам отвечает принцип каскадности когда на реке строят не одну, а ряд ГЭС, расположенных по течению реки. Это позволяет создать на реке несколько последовательно расположенных на разных уровнях водохранилищ, а значит, полнее использовать сток реки, ее энергетические ресурсы й маневрировать мощностью отдельных ГЭС. Каскады гидроэлектрических станций сооружены на многих реках. Кроме Волжского, каскады построены на Каме, Днепре, Чирчике, Раздане, Иртыше, Риони, Свири. Наиболее мощный Ангаро-Енисейский каскад с крупнейшими в мире ГЭС - Братской, Красноярской, Саяно-Шушенской и Богучанской общей мощностью около 17 ГВт и годовой выработкой 76 млрд. кВт- ч электроэнергии.

Существует несколько видов электростанций, использующих энергию потока воды. Помимо гидроэлектростанций строят еще гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). С первого взгляда едва ли заметишь разницу между обычной гидроэлектростанцией и гидро-аккумулирующей электростанцией. Такое же здание, где размещено главное энергетическое оборудование, такие же линии электропередачи. Нет принципиальной разницы и в способе производства электроэнергии. В чем же особенности ГАЭС?

В отличие от ГЭС гидроаккумулирующая станция требует два водохранилища (а не одно) емкостью по нескольку десятков миллионов кубических метров. Уровень одного должен быть на несколько десятков метров выше другого. Оба водохранилища сообщаются между собой трубопроводами. На нижнем водохранилище строится здание ГАЭС. В нем так называемые обратимые гидроагрегаты - гидравлические турбины и электрические генераторы размещены на одном валу . Они могут работать и как генераторы тока, и как электрические водяные насосы . Когда потребление энергии уменьшается, например в ночные часы , гидравлические турбины выполняют роль насосов , перекачивая воду из нижнего водохранилища в верхнее. При этом генераторы работают как электрические двигатели , получающие электрическую энергию от тепловых и атомных электростанций. Когда же потребление электроэнергии возрастает, гидроагрегаты ГАЭС переключаются на обратное вращение. Падающая из верхнего водохранилища в нижнее вода вращает гидравлические турбины, генераторы вырабатывают электрическую энергию. Таким образом, ГАЭС в ночные часы как бы накапливает электроэнергию, вырабатываемую другими электростанциями, а днем отдает ее. Поэтому ГАЭС обычно служит, как говорят энергетики, для покрытия «пиков» нагрузки, т. е. она дает энергию тогда, когда в ней особо нуждаются. На земном шаре действуют более 160 ГАЭС. У нас в стране первая ГАЭС построена под Киевом. Она имеет малый напор, всего 73 м, и суммарную мощность 225 МВт.

Вступила в строй более крупная ГАЭС в Московской области, мощностью 1,2 ГВт, с напором 100 м.

Обычно ГАЭС строят на реках. Но, как оказалось, подобные электростанции можно строить на берегах морей и океанов. Только там они получили иное название - приливные электростанции (ПЭС).

Два раза в сутки в одно и то же время уровень океана то поднимается, то опускается. Это гравитационные силы Луны и Солнца притягивают к себе массы воды. Вдали от берега колебания уровня воды не превышают 1 м, но у самого берега они могут достигать 13 м, как, например, в Пенжинской губе на Охотском море.

Если залив или устье реки перегородить плотиной, то в момент наибольшего подъема воды в таком искусственном водохранилище можно запереть сотни миллионов кубических метров воды. Когда же в море наступает отлив, между уровнями воды в водохранилище и в море создается перепад, достаточный для вращения гидротурбин, установленных в зданиях ПЭС. Если водохранилище одно, ПЭС может вырабатывать электрическую энергию непрерывно в течение 4-5 ч с перерывами соответственно по 1-2 ч четыре раза за сутки (столько раз меняется уровень воды в водохранилище при приливах и отливах).

Чтобы устранить неравномерность выработки электроэнергии, водохранилище станции делится плотиной на 2-3 меньших. В одном поддерживают уровень отлива, в другом - уровень прилива, третье служит резервным.

На ПЭС устанавливают гидроагрегаты, которые способны работать с высоким КПД как в генераторном (производить электроэнергию), так и в насосном режиме (перекачивать воду из водохранилища с низким уровнем воды в водохранилище с высоким уровнем). В насосном режиме ПЭС работает тогда, когда в энергосистеме появляется избыточная электроэнергия. В этом случае агрегаты подкачивают или откачивают воду из одного водохранилища в другое.

В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт.

Десятилетний опыт эксплуатации первой ПЭС позволил приступить к составлению проектов Мезенской ПЭС на Белом море, Пенжинской и Тугурской на Охотском море.

Использование великих сил приливов и отливов Мирового океана, даже самих океанских волн - интересная проблема. К решению ее еще только приступают. Тут многое предстоит изучать, изобретать, конструировать.

Строительство крупных энергетических гигантов - будь то ГЭС, ГАЭС или ПЭС - каждый раз экзамен для строителей. Здесь соединяется труд рабочих самой высокой квалификации и разных специальностей - от мастеров бетонных работ до монтажников-верхолазов.



Новое на сайте

>

Самое популярное