Домой Пульпит Современные спутники и спутниковые системы. Первый спутник земли

Современные спутники и спутниковые системы. Первый спутник земли

Искусственный спутник Земли - космический аппарат, который вращается вокруг Земли, находясь на геоцентрической орбите. Изначально слово «спутник» использовалось для обозначения советских космических аппаратов, но в 1968-1969 гг. была реализована идея по созданию международного многоязычного космического словаря, в котором по обоюдной договоренности стран-участниц термин «спутник» стал применяться к искусственным спутникам Земли, запущенным в любой стране мира.
В соответствии с международной договоренностью космический аппарат считается спутником, если он совершил не менее одного оборота вокруг Земли. Для того чтобы вывести спутник на орбиту, необходимо сообщить ему скорость, равную или большую первой космической скорости. Высота полета спутника может быть различной и колеблется от нескольких сот до сотен тысяч километров.

Наименьшая высота определяется наличием процесса быстрого торможения в верхних слоях атмосферы. От высоты зависит также период обращения спутника по орбите, который варьируется от
нескольких часов до нескольких суток. Применяются в научных исследованиях и для решения прикладных задач. Подразделяются на военные, метеорологические, навигационные, спутники связи и др. Существуют также спутники радиолюбительские.

Если спутник на борту имеет передающую радиоаппаратуру, какие-либо измерительные приборы, импульсные лампы, используемые для подачи сигналов, то он считается активным. Пассивные искусственные спутники Земли используются для реализации ряда научных задач и в качестве объектов наблюдения с земной поверхности.

Масса спутника напрямую зависит от задач, которые предстоит реализовать объекту запуска в околоземном пространстве, и может составлять от сотен граммов до сотен тонн.

Искусственные спутники имеют определенную ориентацию в пространстве в зависимости от поставленных задач. Так, например, вертикальная ориентация используется для спутников, основной задачей которых является наблюдение объектов на поверхности Земли и в ее атмосфере.

Для астрономических исследований спутники ориентируются на исследуемые небесные тела. Возможна ориентация отдельных элементов спутника, например антенн, на земные станции приема, а солнечных батарей - в сторону Солнца.

Системы ориентации спутников делятся на пассивные (магнитные, аэродинамические, гравитационные) и активные (системы, снабженные управляющими органами).

Последние применяются в основном на технически сложных искусственных спутниках и космических кораблях.

Первым в мире искусственным спутником Земли стал «Спутник-1». Он был запущен 4 октября 1957 г. с космодрома Байконур.

Над созданием этого космического аппарата работали ведущие ученые СССР того времени, среди которых основоположник практической космонавтики С. П. Королев, М. К. Тихонравов, М. В. Келдыш и многие другие. Спутник представлял собой алюминиевую сферу, которая имела 58 см в диаметре, массу 83,6 кг. В верхней части располагались две антенны, каждая из которых состояла из двух штырей и четырех антенн. Спутник был оснащен двумя радиопередатчиками с источниками питания. Диапазон передатчиков был таким, чтобы его передвижения могли отслеживать и радиолюбители. Он совершил 1440 оборотов вокруг Земли за 92 дня. Во время полета стало возможным по изменению орбиты спутника впервые определить плотность верхней атмосферы, помимо этого были получены первые данные по распространению радиосигналов в ионосфере. Уже 3 ноября был запущен второй, биологический, спутник Земли, который на борту, помимо улучшенной научной аппаратуры, доставил на орбиту живое существо - собаку Лайку. Общий вес спутника составил 508,3 кг. Спутник был оборудован системами терморегулирования и регенерации для поддержания условий, необходимых для жизни животного.

Первым искусственным спутником СССР разведывательного назначения стал «Зенит-2», который был выведен на орбиту 26 апреля 1962 г. В комплект оборудования входила капсула для сброса фотоматериала и различная фото- и радиоразведывательная аппаратура.

США стали второй мировой державой, открывшей для себя космическое пространство, запустив свой спутник, «Эксплорер-1» 1 февраля 1958 г. (по некоторым данным, 31 января 1958 г.). Запуск и разработку спутника осуществляла бригада специалистов под командованием бывшего немецкого инженера Вернера фон Брауна, создателя «оружия возмездия» - ракеты, известной под названием «Фау-2». Запуск спутника осуществлялся при помощи баллистической ракеты «Редстоун», использовавшей в качестве топлива смесь этилового спирта и гидразина (N,H4). Масса спутника составляла 8,3 кг, что в 10 раз меньше советского спутника, тем не менее «Эксплорер-1» на борту имел счетчик Гейгера и датчик атмосферных частиц.
Третьей космической державой стала Франция, запустив спутник «Астерикс-1» 26 ноября 1965 г. Австралия была следующей державой, которая заслужила право называться космической, это случилось 29 ноября 1967 г., спутник назывался «ВРЕСАТ-1». В 1970 г. сразу две державы пополнили список искусственных спутников Земли - Япония (спутник «Осуми») и Китай (спутник «Китай-1»).

Первый искусственный спутник Земли

Искусственный спутник Земли (ИСЗ) - , вращающийся вокруг по геоцентрической орбите.

Движение искусственного спутника Земли по геостационарной орбите

Для движения по орбите вокруг Земли аппарат должен иметь начальную скорость, равную или большую первой космической скорости. Полёты ИСЗ выполняются на высотах до нескольких сотен тысяч километров. Нижнюю границу высоты полёта ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полёта может составлять от полутора часов до нескольких лет. Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах.

Под понятием спутник, как правило, подразумеваются беспилотные космические аппараты, однако околоземные пилотируемые и автоматические грузовые космические корабли, а также орбитальные станции по сути также являются спутниками. Автоматические межпланетные станции и межпланетные космические корабли могут запускаться в дальний космос как минуя стадию спутника (т.н. прямое восхождение), так и после предварительного вывода на т.н. опорную орбиту спутника.

В начале космической эры спутники запускались только посредством ракет-носителей, а к концу XX века широкое распространение получил также запуск спутников с борта других спутников - орбитальных станций и космических кораблей (в первую очередь, с МТКК-космоплана Спейс Шаттл). Как средства выведения спутников теоретически возможны, но пока не реализованы также МТКК-космолёты, космические пушки, космические лифты. Уже через небольшое время после начала космической эры стало обычным выведение более одного спутника на одной ракете-носителе, а к концу 2013 года число выводимых одновременно спутников в некоторых запусках ракет-носителей превысило три десятка. В ходе некоторых запусков последние ступени ракет-носителей также выходят на орбиту и на какое-то время фактически становятся спутниками.

Беспилотные спутники имеют массы от нескольких кг до двух десятков тонн и размерности от нескольких сантиметров до (в частности, при использовании солнечных батарей и выдвижных антенн) нескольких десятков метров. Являющиеся спутниками космические корабли и космопланы достигают нескольких десятков тонн и метров, а сборные орбитальные станции – сотен тонн и метров. В XXI веке с развитием микроминиатюризации и нано-технологий массовым явлением стало создание сверхмалых спутников форматов кубсат (от одного до несколько кг и от нескольких до нескольких десятков см), а также появился новый формат покетсат (буквально карманный) в несколько сотен или десятков грамм и несколько сантиметров.

Спутники преимущественно создаются как невозвратные, однако некоторые из них (в первую очередь, пилотируемые и некоторые грузовые космические корабли) являются возвращаемыми частично (имея спускаемый аппарат) или полностью (космопланы и спутники, возвращаемые на их борту).

Искусственные спутники Земли широко используются для научных исследований и прикладных задач (военные спутники, исследовательские спутники, метеорологические спутники, навигационные спутники, спутники связи, биоспутник и т.д.), а также в образовании (в мире стали массовым явлением университетские ИСЗ; в России запущен ИСЗ, созданный преподавателями, аспирантами и студентами МГУ, планируется запуск спутника МГТУ им. Баумана) и хобби - радиолюбительские спутники. В начале космической эры спутники запускались государствам (национальными государственными организациями), однако затем широкое распространение получили спутники частных компаний. С появлением кубсатов и покетсатов со стоимостью выведения до нескольких тысяч долларов стал возможен запуск спутников частными лицами.

ИСЗ запускались более чем 70 различными странами (а также отдельными компаниями) с помощью как собственных ракет-носителей (РН), так и предоставляемых в качестве пусковых услуг другими странами и межгосударственными и частными организациями.

Первый в мире ИСЗ запущен в СССР 4 октября 1957 года (Спутник-1). Второй страной, запустившей ИСЗ, стали США 1 февраля 1958 года (Эксплорер-1). Следующие страны - Великобритания, Канада, Италия - запустили свои первые ИСЗ в 1962, 1962, 1964 гг. соответственно на американских РН. Третьей страной, выведшей первый ИСЗ на своей РН, стала Франция 26 ноября 1965 года (Астерикс). Австралия и ФРГ обзавелись первыми ИСЗ в 1967 и 1969 гг. соответственно также с помощью РН США. На своих РН запустили свои первые ИСЗ Япония, Китай, Израиль в 1970, 1970, 1988 гг. Ряд стран - Великобритания, Индия, Иран, а также Европа (межгосударственная организация ESRO, ныне ESA) - запустили свои первые ИСЗ на иностранных носителях, прежде чем создали свои РН. Первые ИСЗ многих стран были разработаны и закуплены в других странах (США, СССР, Китае и др.).

Различают следующие типы спутников:

Астрономические спутники - это спутники, предназначенные для исследования планет, галактик и других космических объектов.
Биоспутники - это спутники, предназначенные для проведения научных экспериментов над живыми организмами в условиях космоса.
Дистанционного зондирования Земли
Космические корабли - пилотируемые космические аппараты
Космические станции - долговременные космические корабли
Метеорологические спутники - это спутники, предназначенные для передачи данных в целях предсказания погоды, а также для наблюдения климата Земли
Малые спутники - спутники малого веса (менее 1 или 0.5 тонн) и размера. Включают в себя миниспутники (более 100 кг), микроспутники (более 10 кг) и наноспутники (легче 10 кг), в т.ч. кубсаты и покетсаты.
Разведывательные спутники
Навигационные спутники
Спутники связи
Экспериментальные спутники

10 февраля 2009 года впервые в истории произошло столкновение спутников. Столкнулись российский военный спутник (выведенный на орбиту в 1994 году, но через два года списанный) и рабочий американский спутник, оператора спутниковой телефонной связи Иридиум. «Космос-2251» весил почти 1 тонну, а «Iridium 33» 560 кг.

Столкнулись спутники в небе над северной частью Сибири. В результате столкновения образовалось два облака из мелких обломков и фрагментов (общее количество обломков составило около 600).

Человек с раннего детства, когда смотрит на звёздное небо и Луну, задается вопросом, как устроены космос, звезды, планеты, галактика, вселенная. Нас влечет, всё неизвестное и не понятное. Приоткрыть завесу в тайну космоса, удалось советским учёным под руководством гениального инженера-конструктора Королева Сергея Павловича, под руководством которого запустили первый искусственный спутник Земли (сокращенно — ИСЗ).

Первый запуск

Именно СССР 4 октября 1957 года первым запустил в космическое пространство простейший спутник земли или ПС-1 на ракетоносителе Р-7, с космодрома Байконур. Возглавлял творческий коллектив создателей спутника Сергей Королев.

Сергей Королев и Юрий Гагарин

Технические характеристики у первого искусственного спутника земли достаточно примитивные по сравнению со спутниками, которые запускаются в наше время.

ПС-1 представлял из себя шар диаметром примерно 58 см., к которому были присоединены четыре антенны длинной 2,4 и 2,9 метра, они нужны были, для принятия радиоприёма. Масса ПС-1 была 83,6 кг. Внутри спутника находились датчики давления, температуры, вентиляторы, включающиеся от реле, которые начинали работать, если температура поднималась выше +30С, коммутирующие устройство, которое передавало сигнал от спутника на Землю.

ПС-1 отделился от ракетоносителя через 295 секунд после старта, а уже через 315 секунд после старта, он послал на землю первый радиосигнал, который мог принимать любой радиолюбитель, это были повторяющиеся на протяжении примерно около 2 минут сигналы: «Бип, Бип». Эти сигналы потрясли весь мир, началась эра космонавтики и гонки вооружений между СССР и США.

ПС-1 пробыл на эллиптической орбите Земли 92 дня и выполнил 1440 оборотов вокруг планеты, радиосигнал он продолжал передавать на протяжении 20 дней. После чего скорость вращения ПС-1 начала снижаться, и 4 января 1957 года он сгорел в плотных слоях атмосферы из-за высокого трения.

Космические технологии

В наше время просторы вселенной бороздят уже примерно около 13 тысяч искусственных спутников Земли, большая часть из них принадлежит США, России, и Китаю. Технология запусков спутников заключается в том чтобы при запуске дать ему как можно большую скорость. Попав на эллиптическую орбиту земли спутник сможет сам, без включения двигателей, за счёт набранной скорости долгое время вращаться и передавать сигналы.

Для современного мира искусственные спутники – это неотъемлемая часть нашего мира, спутники связи, спутники навигации, метеорологические спутники, разведывательные спутники, биоспутники и многие другие искусственные спутники, помогают нам в обычной жизни.

Мы прогнозируем погоду, прокладываем новые маршруты, пользуемся сотовой связью, спутниковым телевидением, беспроводным интернетом, составляем карты и регистрируем земельные участки в привязке к спутнику, и все это благодаря искусственным спутникам земли.

Изучение космоса

О искусственных спутниках Земли интересных фактов много, но также беспилотные космические аппараты исследуют и другие планеты. Так что помимо спутников, которые облегчают нам нашу повседневную жизнь, человечество не стоит на месте и в настоящее время существуют искусственные спутники Луны, Марса, Солнца, Венеры.

Искусственный спутник Луны, первым запустили учёные СССР, этот спутник передавал фотографии поверхности луны, с помощью которых учёные убедились в ее специфической форме, узнали её строение и особенности тяготения.
Искусственный спутник Марса: одновременно эту планету начали изучать три спутника, два советских и один американский.

У всех этих спутников стояли разные задачи, одни фотографировали поверхность планеты, другие изучали температуру, рельеф, обтекаемость планеты, наличие воды, но стоить заметить, что первым искусственным спутником который совершил мягкую посадку на поверхность этой планеты был советский спутник Марс-3.

Первый искусственный спутник у Солнца, появился тогда когда его совершенно туда не собирались запускать. Спутник НАСА который должен был исследовать лунную поверхность, перелетел орбиту луны и остановился на орбите солнца. У России так же имеется своей искусственный спутник солнца, который изучает соленную активность и передаёт геомагнитные вспышки и колебания.

Исследование Фобоса, спутника Марса

Искусственные спутники Венеры. В Советском Союзе первым отправил в 1975 году искусственные спутники, при помощи которых получили высококачественные изображения поверхности этой планеты.

4 октября 1957 года — памятная дата для всего человечества, в этот день в Российской Федерации отмечают день космических войск РФ, а во всем мире праздник запуска первого спутника земли.

В современном мире жители нашей планеты уже активно пользуются достижениями космических технологий. Научные спутники , такие, как космический телескоп , демонстрируют нам все величие и необъятность окружающего нас пространства, чудеса, происходящие как в отдаленных уголках Вселенной, так и в ближайшем космосе. Активное использование получили спутники связи , подобные, например, "Гэлакси XI" . С их участием обеспечивается международная и мобильная телефонная связь и, конечно, спутниковое телевидение . Спутники связи играют огромную роль в распространении интернета . Это благодаря им мы имеем возможность с огромной скоростью получить доступ к информации, которая физически расположена на другом конце света, на другом континенте. Спутники наблюдения , один из них "Спот" , передают информацию, важную для различных отраслей промышленности и отдельных организаций, помогая, например, геологам искать месторождения полезных ископаемых, администрациям крупных городов - планировать застройку, экологам - оценивать уровень загрязнения рек и морей. Самолеты, корабли и автомобили ориентируются, используя спутники Глобальной системы ориентирования (GPS) , а управление морскими коммуникациями осуществляется с использованием навигационных спутников и спутников связи. Мы уже привыкли видеть в прогнозах погоды снимки, сделанные такими спутниками, как "Метеосат" . Другие спутники помогают ученым следить за состоянием окружающей среды, передавая такую информацию, как высота волн и температура морской воды. Военные спутники обеспечивают армии и органы безопасности самой различной информацией, в том числе данными радиоэлектронной разведки, выполняемой, например, спутниками "Магнум" , а также снимками с очень высоким разрешением, которые выполняют секретные спутники оптической и радиолокационной разведки . В этом разделе сайта мы познакомимся со многими спутниковыми системами, принципами их работы и устройством спутников.

Для начала, чтобы сразу иметь представление о сложности спутниковых систем и коммуникаций, рассмотрим более "приближенный к действительности" один из первых спутников связи - спутник «Комстар» .

Спутник связи «Комстар 1»



Конструкция спутника связи «Комстар-1»

Одним из первых геостационарных спутников, применявшихся для повседневных нужд людей, стал спутник «Комстар» . Спутники «Комстар 1» управляются оператором «Комсат» и арендуются AT&T. Их срок службы рассчитан на семь лет. Они ретранслируют сигналы телефонии и телевизионные сигналы в пределах территории США, а также Пуэрто-Рико. Через них может одновременно ретранслироваться до 6000 телефонных разговоров и до 12 телевизионных каналов. Геометрические размеры спутника «Комстар 1» : высота: 5,2 м (17 футов), диаметр: 2,3 м (7,5 фута). Стартовый вес составляет 1410 кг (3109 фунтов).

Приемопередающая антенна связи с вертикальной и горизонтальной поляризационными решетками, позволяет вести и прием, и передачу на одной частоте, но с перпендикулярной поляризацией. За счет этого пропускная способность радиочастотных каналов спутника удваивается. Забегая вперед, можно сказать, что поляризация радиосигнала используется сейчас практически во всех спутниковых системах, особенно это знакомо владельцам спутниковых приемных телевизионных систем, где при настройке на высокочастотные телеканалы приходится устанавливать либо вертикальную, либо горизонтальную поляризацию.

Еще одна интересная конструктивная особенность состоит в том, что цилиндрический корпус спутника вращается со скоростью около одного оборота в секунду, чтобы обеспечить эффект гироскопической стабилизации спутника в пространстве. Если учесть немалую массу спутника - около полутора тонн - то эффект действительно имеет место. И при этом антенны спутника остаются направленными в определенную точку пространства на Земле, чтобы излучать туда полезный радиосигнал.

Одновременно спутник должен находиться на геостационарной орбите, т.е. "висеть" над Землей "неподвижно", точнее, лететь вокруг планеты со скоростью её вращения вокруг собственной оси в направлении её вращения. Уход с точки позиционирования вследствие влияния различных факторов, самыми значительными из которых являются мешающее притяжение Луны, встреча с космической пылью и другими объектами космоса, отслеживается системой управления и периодически корректируется двигателями системы ориентации спутника.

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?

Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?

Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?

Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников

На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники

До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?

После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников

Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.



Новое на сайте

>

Самое популярное