Домой Запах изо рта Полная сила ампера. Применение закона Ампера

Полная сила ампера. Применение закона Ампера

Магнитное поле действует на токи, циркулирующие в магнитной стрелке. Из этих воздействий складывается действие магнитного поля на стрелку в целом.

2. Сформулируйте закон Ампера. Запишите его математическое выражение.

Закон Ампера: сила, с которой магнитное поле действует на отрезок проводника в током (помещенный в это поле), численно равна произведению силы тока, модуля вектора магнитной индукции, длине отрезка проводника и синуса угла между направлением силы

тока и вектором магнитной индукции.

3. Как ориентирована сила Ампера относительно направления тока и вектора магнитной индукции?

Эти векторные величины составляют правую тройку векторов.

4. Как определяется направление силы Ампера? Сформулируйте правило левой руки.

Направление силы Ампера определяется по правилу левой руки: если положить левую ладонь так, чтобы вытянутые пальцы указывали направление тока, а линии магнитного поля впивались в ладонь, то отставленный большой палец укажет направление силы Ампера, действующей на проводник.

5. Чему равен модуль вектора магнитной индукции? В каких единицах измеряется магнитная индукция?

Модуль вектора магнитной индукции - величина, численно равная отношению максимальной сила Ампера, действующей на проводник, к произведению силы тока на длину проводника.

Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера

Закон Ампера в векторной форме

Устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила , пропорциональная силе тока и индукции магнитного поля

Направлена перпендикулярно плоскости, в которой лежат векторы dl и B. Для определения направления силы , действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.

Чтоб найти силу Ампера для двух бесконечных параллельных проводников, токи которых текут в одном направлении и эти проводники находятся на расстоянии r, необходимо:

Бесконечный проводник с током I1 в точке на расстоянии r создаёт магнитное поле с индукцией:

По закону Био-Савара-Лапласа для прямого тока:

Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:

По правилу буравчика, направлена в сторону первого проводника (аналогично и для , а значит, проводники притягиваются).

Интегрируем, учитывая только проводник единичной длины (пределы l от 0 до 1) и сила Ампера получается:

В формуле мы использовали:

Значение тока

Скорость хаотического движения носителя

Скорость упорядоченного движения

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера .

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 °большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r - радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α - угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В - индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.

Модуль силы Лоренца, как уже известно, равен F = QvB sin a; где α - угол между v и В.

МП не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.

Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.

Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает.

В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил - силы, действующей со стороны электрического поля, и силы Лоренца: F = QE + Q

Сила Ампера, Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F = B.I.l. sin α - закон Ампера.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:

Явление электромагнитной индукции. Закон Фарадея. ЭДС индукции в движущихся проводниках. Самоиндукция.

Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.

Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит. Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током.

Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром.

Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.

Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.

Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Это выражение представляет собой основной закон электромагнитной индукции.

При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.

Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности :

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания - это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур - это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля. Практическое исполь­зование электромагнитных явлений весьма широкое. Это - системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна­чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО.

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче – бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ – длина световой волны, – характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.

Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.

Основные законы геометрической оптики.

Перечислим основные законы оптики, следующие из опытных данных:

1) Прямолинейное распространение.

2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.

3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу

Отражения.

4) Закон преломления света.

Закон преломления : луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости – плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.

Sin i1/ sin i2 = n2/n1 = n21

где – относительный показатель преломления второй среды относительно первой среды. n21

Если вещество 1 – пустота, вакуум, то n12 → n2 – абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 – воздух, 2 – стекло), а справа – отношение их абсолютных показателей преломления.

5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.

Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin

Что такое сила ампера

В 1820 году выдающийся французский физик Андре Мари Ампер (именно в его честь названа единица измерения электрического тока) сформулировал один из основополагающих законов всей электротехники. Впоследствии за этим законом закрепилось название сила ампера.

Как известно, при прохождении по проводнику электрического тока вокруг него возникает свое собственное (вторичное) магнитное поле, линии напряженности которого формируют своеобразную вращающуюся оболочку. Направление этих линий магнитной индукции определяют с помощью правила правой руки (второе название "правило буравчика"): мысленно обхватываем правой рукой проводник так, чтобы течение заряженных частиц совпадало с направлением, указываемым отогнутым большим пальцем. В результате другие четыре пальца, обхватывающие провод, укажут на вращение поля.

Если расположить параллельно два таких проводника (тонких провода), то на взаимодействие их магнитных полей будет влиять сила ампера. В зависимости от направления тока в каждом проводнике, они могут отталкиваться или притягиваться. При токах, текущих в одном направлении, сила ампера оказывает на них притягивающее действие. Соответственно, противоположное направление токов вызывает отталкивание. В этом нет ничего удивительного: хотя одноименные заряды отталкиваются, в данном примере взаимодействуют не сами заряды, а магнитные поля. Так как направление их вращения совпадает, то итоговое поле представляет собой векторную сумму, а не разность.

Другими словами, магнитное поле определенным образом воздействует на проводник, пересекающий линии напряженности. Сила ампера (произвольная форма проводника) определяется из формулы закона:

где - I - значение силы тока в проводнике; B - индукция магнитного поля, в котором размещается проводящий ток материал; L - взятый для расчетов длины проводника с током (причем, в данном случае считается, что длина проводника и сила стремятся к нулю); альфа (а) - векторный угол между направлением движения заряженных элементарных частиц и линиями напряженности внешнего поля. Следствие следующее: когда угол между векторами составляет 90 градусов его sin = 1, а значение силы максимально.

Векторное направление действия силы ампера определяют посредством правила левой руки: мысленно размещаем ладонь левой руки таким образом, чтобы линии (векторы) магнитной индукции внешнего поля входили в раскрытую ладонь, а остальные четыре выпрямленных пальца указывали направление, в котором движется ток в проводнике. Тогда большой палец, отогнутый под углом 90 градусов, покажет направление действующей на проводник силы. Если угол между вектором электрического тока и произвольной линией индукции слишком мал, то для упрощения применения правила в ладонь должен входить не сам вектор индукции, а модуль.

Применение силы ампера дало возможность создать электродвигатели. Все мы привыкли к тому, что достаточно щелкнуть выключателем электрического бытового прибора, оснащенного двигателем, чтобы его исполнительный механизм пришел в действие. А о процессах, происходящих при этом, никто особо не задумывается. Направление силы ампера не только объясняет принцип работы двигателей, но и позволяет определить, куда именно будет направлен вращающий момент.

Для примера представим двигатель постоянного тока: его якорь - это каркас-основа с обмоткой. Внешнее магнитное поле создается специальными полюсами. Так как обмотка, намотанная на якорь, круговая, то с противоположных его сторон направление тока на участках проводника встречно. Следовательно, вектора действия силы ампера также встречны. Так как якорь закреплен на подшипниках, то взаимное действие векторов силы ампера создает вращающий момент. С ростом действующего значения тока увеличивается и сила. Именно поэтому номинальный электрический ток (указан в паспорте на электрооборудование) и вращающий момент непосредственно взаимосвязаны. Увеличение тока ограничивается конструктивными особенностями: сечением использованного для обмотки провода, количеством витков и пр.

Сила Ампера

– Сила Ампера (или закон Ампера)

Направление силы Ампера находится по правилу векторного произведения – по правилу левой руки: четыре вытянутых пальца левой руки расположить по направлению тока, вектор входит в ладонь, отогнутый под прямым углом большой палец покажет направление силы, действующей на проводник с током. (Можно также определить направление с помощью правой руки: вращаем четыре пальца правой руки от первого сомножителя ко второму , большой палец укажет направление .)

Модуль силы Ампера

,

где α – угол между векторами и .

Если поле однородно, а проводник с током конечных размеров, то

При перпендикулярном

  1. Определение единицы измерения силы тока.

Любой проводник с током создает вокруг себя магнитное поле. Если поместить в это поле другой проводник с током, то между этими проводниками возникают силы взаимодействия. При этом параллельные сонаправленные токи притягиваются, противоположно направленные - отталкиваются.


Рассмотрим два бесконечно длинных параллельных проводника с токами I 1 иI 2, находящимися в вакууме на расстоянии d (для вакуума µ = 1). В соответствии с законом Ампера

Магнитное поле прямого тока равно

,

сила, действующая на единицу длины проводника

Сила, действующая на единицу длины проводника между двумя бесконечно длинными проводниками с током, прямо пропорциональна силе тока в каждом из проводников и обратно пропорциональна расстоянию между ними.

Определение единицы измерения силы тока – Ампера:

За единицу силы тока в системе СИ принята такая сила постоянного тока, который протекая по двум бесконечно длинным параллельным проводникам бесконечно малого сечения, расположенным в вакууме на расстоянии 1 м друг от друга, вызывает силу, действующую на единицу длины проводника, равную 2·10-7 Н.

µ = 1; I 1 = I 2 = 1 A ; d = 1 м; µ 0 = 4π·10-7 Гн/м – магнитная постоянная.

/ fizika / Закон Ампера. Взаимодействие параллельных токов

Закон Ампера. Взаимодействие параллельных токов.

Закон Ампера - закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельныепроводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией .

Тема 10. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ДВИЖУЩИЕСЯ ЗАРЯДЫ В МАГНИТНОМ ПОЛЕ.

10.1. Закон Ампера.

10.3. Воздействие магнитного поля на рамку с током. 10.4. Единицы измерения магнитных величин. 10.5. Сила Лоренца.

10.6. Эффект Холла.

10.7. Циркуляция вектора магнитной индукции.

10.8. Магнитное поле соленоида.

10.9. Магнитное поле тороида.

10.10. Работа по перемещению проводника с током в магнитном поле.

10.1. Закон Ампера.

В 1820 г. А. М. Ампер экспериментально установил, что два проводника с током взаимодействуют друг с другом с силой:

F = k

I 1 I 2

где b – расстояние между проводниками, а k – коэффициент пропорциональности зависящий от системы единиц.

В первоначальное выражение закона Ампера не входила никакая величина характеризующая магнитное поле. Потом разобрались, что взаимодействие токов осуществляется через магнитное поле и следовательно в закон должна входить характеристика магнитного поля.

В современной записи в системе СИ, закон Ампера выражается формулой:

Если магнитное поле однородно и проводник перпендикулярен силовым линиям магнитного поля, то

где I = qnυ др S – ток через проводник сечением S.

Направление силы F определяется направлением векторного произведения или правилом левой руки (что одно и тоже). Ориентируем пальцы по направлению первого вектора, второй вектор должен входить в ладонь и большой палец показывает направление векторного произведения.

Закон Ампера – это первое открытие фундаментальных сил зависящих от скоростей. Сила зависящая от движения! Такого еще не было.

10.2. Взаимодействие двух параллельных бесконечных проводников с током.

Пусть b – расстояние между проводниками. Задачу следует решать так: один из проводников I 2 создаёт магнитное поле, второй I 1 находится в этом поле.

Магнитная индукция, создаваемая током I 2 на расстоянии b от него:

B 2 = µ 2 0 π I b 2 (10.2.1)

Если I 1 и I 2 лежат в одной плоскости, то угол между B 2 и I 1 прямой, следовательно

sin (l , B ) = 1 тогда, сила, действующая на элемент тока I 1 dl

F21 = B2 I1 dl =

µ0 I1 I2 dl

2 πb

На каждую единицу длины проводника действует сила

F 21 ед =

I1 I2

(разумеется, со стороны первого проводника на второй действует точно такая же сила). Результирующая сила равна одной из этих сил! Если эти два проводника будут

воздействовать на третий, тогда их магнитные поля B 1 и B 2 нужно сложить векторно.

10.3. Воздействие магнитного поля на рамку с током.

Рамка с током I находится в однородном магнитном поле B , α – угол между n и B (направление нормали связано с направлением тока правилом буравчика).

Сила Ампера действующая на сторону рамки длиной l равна:

F1 = IlB (B l ).

На другую сторону длиной l действует такая же сила. Получается «пара сил» или «вращающий момент».

M = F1 h = IlB bsinα,

где плечо h = bsinα . Так как lb = S – площадь рамки, тогда можно записать

M = IBS sinα = Pm sinα.

Вот откуда мы писали с вами выражение для магнитной индукции:

где M – вращающий момент силы, P – магнитный момент.

Физический смысл магнитной индукции B – величина численно равная силе, с которой магнитное поле действует на проводник единичной длины по которому течет

единичный ток. B = I F l ; Размерность индукции [ B ] = А Н м . .

Итак, под действием этого вращательного момента рамка повернётся так, что n r || B . На стороны длиной b тоже действует сила Ампера F 2 – растягивает рамку и так

как силы равны по величине и противоположны по направлению рамка не смещается, в этом случае М = 0, состояние устойчивого равновесия

Когда n и B антипараллельны, M = 0 (так как плечо равно нулю), это состояние, неустойчивого равновесия. Рамка сжимается и, если чуть сместится, сразу возникает

вращающий момент такой что она повернется так, что n r || B (Рис. 10.4).

В неоднородном поле рамка повернется и будет вытягиваться в область более сильного поля.

10.4. Единицы измерения магнитных величин.

Как вы догадываетесь, именно закон Ампера используется для установления единицы силы тока – Ампера.

Итак, Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстояние один метр, один от другого в вакууме

вызывает между этими проводниками силу в 2 10 − 7 Н м .

I1 I2

где dl = 1 м; b = 1 м; I1

I2 = 1 А;

2 10− 7

Определим отсюда размерность и величину µ 0 :

В СИ: 2·10

µ0 = 4π·10

или µ0 = 4π·10

–7 Гн

В СГС: µ 0 = 1

Био-Савара-Лапласа,

прямолинейного

проводника с током

µ0 I

Можно найти размерность индукции магнитного поля:

4 πb

1 Тл

Один тесла 1 Тл = 104 Гс.

Гаусс – единица измерения в Гауссовой системе единиц (СГС).

1 Тл (один тесла равен магнитной индукции однородного магнитного поля, в котором) на плоский контур с током, имеющим магнитный момент 1 А·м2 действует вращающий момент 1 Н·м.

Единица измерения B названа в честь сербского ученого Николы Тесла (1856 – 1943 г.), имевшего огромное количество изобретений.

Другое определение: 1 Тл равен магнитной индукции при которой магнитный поток сквозь площадку 1 м2 , перпендикулярную направлению поля равен 1 Вб.

Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804 – 1891 г.) – профессора университетов в Галле, Геттингеме, Лейпциге.

Как мы уже говорили, магнитный поток Ф, через поверхность S – одна из характеристик магнитного поля (Рис. 10.5)



Новое на сайте

>

Самое популярное