Домой Стоматит Многочлены примеры и решения. Многочлен, его стандартный вид, степень и коэффициенты членов

Многочлены примеры и решения. Многочлен, его стандартный вид, степень и коэффициенты членов

Выражения 5a 2 x, 2a 3 (-3)x 2 , b 2 x являются произведениями чисел, переменных и их степеней. Такие выражения называются одночленами . Одночленами также считают числа, переменные и их степени.

Например, выражения - 8, 35,y и y 2 - одночлены.

Стандартным видом одночлена называется одночлен в виде произведения числового множителя, стоящего на первом месте, и степеней различных переменных. Любой одночлен можно привести к стандартному виду путем перемножения всех переменных и чисел, входящих в него. Приведем пример приведения одночлена к стандартному виду:

4x 2 y 4 (-5)yx 3 = 4(-5)x 2 x 3 y 4 y = -20x 5 y 5

Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена . Например коэффициент одночлена -12сx 6 y 5 равен -12. Коэффициенты одночленов x 3 и -xy считают равными 1 и -1, так как x 7 = 1x 7 и -xy = -1xy

Степенью одночлена называют сумму показателей степеней всех входящих в него переменных. Если одночлен не содержит переменных, то есть является числом, то его степень считают равной нулю.

Например степень одночлена 8x 3 yz 2 равна 6, одночлена 6x равна 1, степень одночлена -10 равна 0.

Многочленом называется сумма одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена. Так членами многочлена 4x 2 y - 5xy + 3x -1 являются 4x 2 y, -5xy, 3x и -1 .

Если многочлен состоит из двух членов, то его называют двучленом, если из трех - трехчленом. Одночлен считают многочленом, состоящим из одного члена.

В многочлене 7x 3 y 2 - 12 + 4x 2 y - 2y 2 x 3 + 6 члены 7x 3 y 2 и - 2y 2 x 3 являются подобными слагаемыми, так как имеют одну и ту же буквенную часть. Подобными являются и слагаемые -12 и 6, не имеющие буквенной части. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене - приведением подобных членов многочлена.

Приведем для примера подобные члены в многочлене 7x 3 y 2 - 12 + 4x 2 y - 2y 2 x 3 + 6 = 5x 3 y 2 + 4x 2 y -6.

Многочлен называется многочленом стандартного вида , если каждый его член является одночленом стандартного вида и этот многочлен не содержит подобных слагаемых.

Любой многочлен можно привести к стандартному виду. Для этого нужно каждый его член представить в стандартном виде и привести подобные слагаемые.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.

Для примера найдем степень многочлена 8x 4 y 2 - 12 + 4x 2 y - 3y 2 x 4 + 6 - 5y 2 x 4:

8x 4 y 2 - 12 + 4x 2 y - 3y 2 x 4 + 6 - 5y 2 x 4 = 4x 2 y -6.

Заметим, что в исходный многочлен входят одночлены шестой степени, но при приведении подобных членов все они сократились, и получился многочлен третьей степени, значит и исходный многочлен имеет степень 3!

Вопросы к конспектам

Дан многочлен Р(х) = 2х 3 - 6х 2 - 5х + 4. Вычислите Р(1).

Определите степень многочлена: 3а 4 - 5а 3 - 2а 5

В 7-м классе школьникам в рамках курса алгебры предстоит знакомство с новыми понятиями и темами. Для них открываются новые двери в увлекательном лабиринте под названием математика. В том числе начинается изучение одночленов и многочленов, а так же их применение.

Что это такое?

Для начала разберемся в понятиях. В математике есть много специфических выражений, многие из которых имеют свои закрепившиеся названия. Одно из таких слов — одночлен . Это математический термин, состоящий из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Многочлен, согласно определению, это алгебраическое выражение, представляющее собой сумму одночленов. Часто возникает необходимость привести одночлен к его стандартному виду. Для этого нужно перемножить все числовые множители, присутствующие в одночлене, и поставить получившееся число на первое место. Потом перемножить все степени, у которых одинаковые буквенные основания. Многочлен так же приводят к стандартному виду, он являет собой произведение, составленное из числового множителя и степеней различных переменных.

Подводные камни

Казалось бы, ничего, на первый взгляд, фатально сложного, но для современных школьников существует ряд обстоятельств, которые могут омрачить картину. Большое количество предметов школьной программы, тотальная нехватка учебных часов, гуманитарный склад ума у многих детей, а также элементарная усталость могут сильно затруднить усвоение нового материала. Нередко случается так, что ребенок, не поняв что-то, стесняется или боится спросить учителя, а самостоятельно осилить тему у него не получается, и начинаются сложности.

Решаем проблему

Чтобы избежать этих «подводных камней», существует несколько способов. Во-первых, родителям школьников стоит обращать внимание на то, как их ребенок справляется с программой в целом и с пройденными темами в частности. Это не должно иметь форму жесткого надзора или контроля над ребенком, но целью нужно ставить формирование ответственного и серьезного подхода к учебе. Залогом этого есть доверительные отношения, но никак не страх.

Довольно распространенная ситуация в школе, когда ребенок, не понял новую тему до конца, боится насмешек одноклассников и неодобрения учителя, поэтому предпочитает молчать о своей заминке. Отношения с педагогами ведь тоже бывают разными, к сожалению, не всем учителям удается найти подход к детям, как показывает практика. И тут есть несколько вариантов выхода:

  • посещение дополнительных занятий в школе, если таковые есть;
  • уроки с репетитором;
  • обучение через Интернет с помощью специальных учебных ресурсов.

В первых двух случаях есть недостатки, которые заключаются во временных и денежных ресурсах, особенно это касается репетиторства. Третий же удобен тем, что такой вариант обучения:

  • бесплатный;
  • можно учиться в любое удобное время;
  • нет психологического дискомфорта для ученика, боязни насмешек, и т.д.
  • всегда можно просмотреть видеоурок еще раз, если с первого раза что-то непонятно.

Несомненно, положительных сторон здесь больше, поэтому родителям стоит взять на заметку, что ребенку можно предложить именно такой вариант дополнительных занятий. Вполне возможно, что сначала школьник не воспримет с энтузиазмом это предложение, но, попробовав, он оценит его плюсы. Из года в год нагрузка по предметам в школе возрастает, в 7-м классе она уже вовсе нешуточная.

На нашем интернет-ресурсе ребенок легко сможет найти урок по теме, которая возможно представляет для него трудности, к примеру, «Многочлен. Приведение к стандартному виду». Разобравшись в нем, дальнейший материал он сможет понимать и осваивать гораздо проще и легче.

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

19. Возьмем формулу

мы ее читали так: «разность числе a и b». Мы можем в этой формуле число a заменить нулем; тогда она обратится в

0 – b или просто в –b.

Из нуля вычесть b значит, согласно тому, что мы знаем о вычитании относительных чисел, к нулю приписать число b, взятое с обратным знаком. Поэтому выражение –b должно понимать, как число, обратное по знаку числу b. Если, напр., b = +5, то –b = –5; если b = –4, то –b = +4 и т. п. Если мы напишем выражение +a, то его надо понимать, как число, равное числу a. Если a = +5, то +a = +5; если a = –4, то +a = 4 и т. п.

Поэтому формулу

мы можем понимать, без различия результата, или в смысле

или в смысле

Таким образом мы всегда можем заменять вычитание сложением и всякую разность понимать, как сумму двух чисел:
a – b есть сумма чисел a и (–b)
x – y есть сумма чисел x и (–y)
–a – b есть сумма чисел (–a) и (–b) и т. п.

Те формулы, где, с точки зрения арифметики, имеют место несколько сложений и вычитаний, напр.,

a – b + c + d – e – f,

мы можем теперь, с точки зрения алгебры, понимать только, как сумму, а именно:

a – b + c + d – e – f = (+a) + (–b) + (+c) + (+d) + (–e) + (–f).

Поэтому принято подобные выражения называть именем «алгебраическая сумма».

20. Возьмем какую-нибудь алгебраическую сумму

a – b – c или –3bc² + 2ab – 4a²b и т. п.

Принято называть эти выражения именем многочлен , причем это слово заменяет собою слово «сумма» или название «алгебраическая сумма». Мы знаем что

a – b – c = (+a) + (–b) + (–c)
–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) и т. п.

Отдельно каждое слагаемое называют именем член многочлена.

Первый многочлен,

состоит из трех членов: (+a), (–b) и (+c).

Второй многочлен,

–abc – 3bc² + 2ab – 4a²b,

состоит из четырех членов: (–abc), (–3bc²), (+2ab) и (–4a²b).

Слагаемые суммы можно переставлять в любом порядке:

–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) =
= (+2ab) + (–3bc²) + (–4a²b) + (–abc) = 2ab – 3bc² – 4a²b – abc.

Это свойство суммы теперь можно выразить иначе: члены многочлена можно переставлять в любом порядке. Это и сделано выше для многочлена –abc – 3bc² + 2ab – 4a²b, притом так, что впереди теперь оказался член (+2ab). Это позволило несколько упростить выражение: впереди знак + можно не писать. Конечно, надо подобные перестановки делать сразу, не заключая предварительно (как выше) каждое слагаемое в скобки.

Еще пример:

1 – 3a + 2a² – a³ + 3a 4 = 3a 4 – a³ + 2a² – 3a + 1.

Первый член этого многочлена был первоначально (+1) – знак + подразумевался перед единицею; когда мы переносим этот член на другое, кроме первого, место (выше мы перенесли его на последнее место), то уже этот знак + пропускать нельзя.

Мы можем заметить, что в предыдущем примере мы перестановкою членов многочлена достигли некоторого порядка: на первом месте стоит член с буквою a в 4-ой степени, на следующем – член с буквою a в 3-ей степени, потом идет член с буквою a во 2-ой степени, потом – a в 1-ой степени и, наконец, член, где буквы a вовсе нет.

Подобное расположение членов многочлена выражают словами «многочлен расположен по нисходящим степеням буквы a».

Вот еще примеры подобного расположения:

3x 5 – 2ax 3 + b (по нисходящим степеням буквы x)
a 4 – a 3 b + a 2 b 2 – ab 3 + b 4 (по нисходящим степеням буквы a)
3ab 5 – 4a 3 b 3 + 5a 4 b 2 – 2a 6 (по нисходящим степеням буквы b)
4x 4 – 3x 3 + 2x 3 (по нисходящим степеням буквы x).

Употребляют часто и обратное «по восходящим степеням» расположение, при котором степень избранной буквы постепенно повышается, причем в 1-м члене или вовсе этой буквы нет, или она имеет здесь наименьшую степень сравнительно с другими членами. О втором из предыдущих примеров мы могли бы сказать, что здесь многочлен расположен по восходящим степеням буквы b. Вот примеры:
3 – 2a + 3a 2 – 4a 3 (по восходящим степеням буквы a );
–x + x 2 – 3x 3 – 4x 4 (по восходящим степеням буквы х );
ax 2 – bx 3 + cx 5 – dx 6 (по восходящим степеням буквы x );
a 3 – 2ab + b 2 (по восходящим степеням буквы b или по нисходящим степеням буквы a);
3x 5 – 4yx 4 – 5y 3 x 2 – 6y 4 x (по нисходящим степеням буквы x или по восходящим степеням буквы y ).

21. Многочлен о двух членах называется двучленом (напр., 3a + 2b), о трех членах – трехчленом (напр., 2a² – 3ab + 4b²) и т. д. Возможно говорить о сумму из одного слагаемого (другое слагаемое равно нулю), или о многочлене об одном члене. Тогда уже, конечно, название «многочлен» неуместно и употребляется название «одночлен». Каждый член любого многочлена, взятый в отдельности, является одночленом. Вот примеры простейших одночленов:

2; –3a; a²; 4x³; –5x4; ab; ab²; –3abc; и т. д.

Почти все одночлены из выше написанных являются произведениями двух или более множителей, причем у большинства из них имеются и числовой множитель и буквенные. Напр., в одночлене –3abc имеется числовой множитель –3 и буквенные множители a, b и c; в одночлене 4x³ имеется числовой множитель +4 (знак + подразумевается) и буквенный множитель x³ и т. д. Если бы мы написали одночлен с несколькими числовыми множителями (а также и с буквенными), вроде следующего

,

то удобнее, переставив множителей так, чтобы числовые множители оказались рядом, т. е.

,

эти числовые множители перемножить – получим

–4a²bc² (точки, знаки умножения пропускаем).

Принято также, в громадном большинстве случаев, числовой множитель писать впереди. Пишут:

4a, а не a 4
–3a²b, а не a²(–3)b

Числовой множитель одночлена называется коэффициентом.

Если в одночлене не написан числовой множитель, например, ab, то можно всегда его подразумевать. В самом деле

a = (+1) ∙ a; ab = (+1)ab;
–a = (–1) ∙ a; a³ = (–1) ∙ a³ и т. п.

Итак, у одночленов a², ab, ab² подразумевается, у каждого, коэффициент 1 (точнее: +1). Если напишем одночлены –ab, –a², –ab² и т. п., то у них должно подразумевать коэффициент –1.

22. Более сложные примеры многочленов и одночленов.

(a + b)² + 3(a – b)² … эта формула выражает сумму двух слагаемых: первым является квадрат суммы чисел a и b, а вторым – произведение числа 3 на квадрат разности тех же чисел. Поэтому эту формулу должно признать двучленом: первый член есть (a + b)² и второй 3(a – b)². Если взять выражение (a + b)² отдельно, то в силу предыдущего, его надо считать одночленом, причем его коэффициент = +1.

a(b – 1) – b(a – 1) – (a – 1)(b – 1) … должно признать за трехчлен (сумма трех слагаемых): первый член есть a(b – 1) и его коэффициент = +1, второй член –b(a – 1), его коэффициент = –1, третий член –(a – 1)(b – 1), его коэффициент = – 1.

Иногда искусственно уменьшают число членов многочлена. Так трехчлен

можно, например, рассматривать за двухчлен, причем a + b, например, считают за один член (за одно слагаемое). Чтобы это яснее отметить, пользуются скобками:

Тогда у члена (a + b) подразумевается коэффициент +1

[в самом деле (a + b) = (+1)(a + b)].

Которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример. Разложите на 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).

Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.

Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).

Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.

Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).

Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.

Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы . Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).

Источники:

  • Разложение многочленов на множители
  • как разложить на множители на многочлен

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Совет 3: Как 90 разложить на два взаимно простых множителя

Взаимно простыми множителями называются числа, не имеющие общих делителей, кроме единицы. Алгоритм достаточно прост, попробуйте рассмотреть его на примере: разложите на два взаимно простых множителя число 90.



Новое на сайте

>

Самое популярное