Домой Удаление Мембранные механизмы фотобиологического действия низкоинтенсивного лазерного излучения. Экспериментальные и клинические исследования эффективности низкоинтенсивного лазерногоизлучения в онкологии

Мембранные механизмы фотобиологического действия низкоинтенсивного лазерного излучения. Экспериментальные и клинические исследования эффективности низкоинтенсивного лазерногоизлучения в онкологии

Биологический эффект низкоинтенсивного лазер­ного излучения (гелий-неоновый и инфракрасный свет) обеспечивает широкий спектр фотохимических и фото- физических изменений, обуславливающих интенсифи­кацию структурно-метаболических процессов, не свя­занных с нарушением целостности зон облучения3.

Воздействие когерентного излучения с длиной волны 0.63 мкм на биоткань вызывает различные реакции орга­низма, а именно:

1) увеличение концентрации щелочной фосфатазы в сыворотке крови;

2) повышение содержания иммуноглобулинов О, Т- лимфоцитов, а также фагоцитарной активности лей-

3) снижение фактора, ингибирующего миграцию макрофагов;

4) усиление микроциркуляции и фибринолитичес- кой активности крови;

5) увеличение митотического индекса и потенциала действия нерва;

6) нормализация повышенной сосудистой сопротив­ляемости.

Основными моментами в сложном механизме дейст­вия лазерного излучения на биологические структуры являются восприятие световых лучей фоторецепторами, трансформация их молекулярной композиции и изме­нение их физико-химического состояния. В дальнейшем происходит активизация биохимических реакций с инициацией в ферментах активных и аллостерических центров и ростом их количества. Подтверждением этому служит большое число публикаций о росте фермента­тивной активности после лазерной терапии4.

Действие когерентного света на биоткань осущес­твляется посредством специфических энзимов - фоторе­цепторов. Схематически первичный ответ биологичес­ких систем на лазерное воздействие выглядит следую­щим образом: возбужденная светом хромофорная группа фоторецепторов передает энергию электронного возбуж­дения связанному с ней белку, а если последний закреп­лен на мембране, то и мембране в целом. В результате указанных процессов тепло, возникающее при безизлу- чательных переходах может вызвать локальный нагрев фоторецепторов, способствующий его переориентации. При этом фоторецептор проходит ряд промежуточных релаксационных состояний, обеспечивающих как дина­мические, так и статические конформационные преоб­разования белка и, соответственно, мембраны, с кото-

рой фоторецептор связан, что, в свою очередь, приво­дит к изменению мембранного потенциала и чувстви­тельности мембраны к действию биологически актив­ных веществ.

Широкий спектр биохимических и физиологичес­ких реакций, наблюдаемых в организме в ответ на воз­действие низкоинтенсивного лазера (рис. 9.1) свидетель­ствует о перспективности его использования в различ­ных областях медицины. Анализ результатов собствен­ных наблюдений показал, что применение инфракрас­ного когерентного света в раннем послеоперационном периоде у больных генитальным эндометриозом (эндо­метриоз яичников и тела матки [миометрэктомия], рет- роцервикальный эндометриоз) способствует уменьше­нию болевого синдрома, улучшает кровообращение в артериях, питающих матку и яичники (по данным тран­свагинальной ультразвуковой допплерометрии) и, самое главное, предотвращает формирование спаечного про­цесса в малом тазу.

При повторной лапароскопии, про­веденной с целью уточнения клинической ситуации у части больных эндометриозом яичников, которым во время предшествующей операции был произведен саль- пингоовариолизис, а в послеоперационном периоде в качестве реабилитационного лечения внутривлагалищ- ное низкоинтенсивное лазерное воздействие, во всех наблюдениях не обнаружено каких-либо признаков спа­ечного процесса.

Мы придерживаемся точки зрения, согласно кото­рой низкоинтенсивный лазер является методом выбора при проведении реабилитационных мероприятий на втором (основном) этапе физического лечения больных генитальным эндометриозом. Вместе с тем, не следует принижать достоинства и других высокоэффективных методик - импульсного электростатического поля низкой частоты, токов надтональной частоты (ультратоноте- рапия), переменного и постоянного магнитного поля.

Исследованиями В.М. Стругацкого и соавт.10 уста­новлено, что применение импульсного электростатичес­кого поля низкой частоты у гинекологических больных приводит к уменьшению локальной болезненности в малом тазу по ходу сосудов и нервных стволов, а также коррекции гормонально-зависимых нарушений. Несмот­ря на то, что основные клинические эффекты импуль­сного электростатического поля - дефиброзирующий и анальгезирующий - выражены несколько слабее, чем при лечении традиционными физическими факторами с аналогичным по направленности действием, данный метод обладает существенным преимуществом, а имен­но - способностью регулировать эстроген-прогестероно- вое соотношение. Благодаря этой способности, импуль­сное электростатическое поле низкой частоты может быть использовано для терапии больных с гиперэстро- генией и/или сопутствующими гормонально-зависимы­ми образованиями внутренних половых органов, т.е., когда применение тегоюобразующих или теплопередаю­щих факторов исключено или ограничено.

Ультратонотерапия - метод электротерапии, при котором на тело пациента воздействуют переменным током надтональной частоты (22 кГц) высокого напря­жения (3-5 кВ). Токи ультратональной частоты оказыва­ют на биоткань мягкое действие, не вызывая неприят­ных ощущений. Под влиянием ультратонотерапии на­блюдается улучшение локального крово- и лимфообра­щения, активизация обменных процессов, купирование болевого синдрома. Данный метод представляет один из

высокоэффективных средств, предупреждающих реок­клюзию маточных труб.

Механизм действия магнитного поля на биоткань связывают со стимуляцией физико-химических процес­сов в биологических жидкостях, биоколлоидах, элемен­тах крови. Предполагается, что анизотропные макромо­лекулы под влияниям магнитного поля изменяют свою ориентацию и, тем самым, приобретают способность проникать сквозь мембраны, воздействуя, таким обра­зом, на биологические процессы. К действию магнитного поля чувствительны такие биологические процессы, как свободнорадикальные реакции окисления липидов, реакции с переносом электронов в цитохромной систе­ме, окисление негеминового железа, а также реакции, протекающие с участием ионов метала переходной груп­пы. Магнитное поле вызывает ускорение кровотока, уменьшает потребность тканей и клеток в кислороде, оказывает сосудорасширяющее и гипотензивное дейст­вие, влияет на функцию свертывающей системы крови. Наряду с влиянием магнитных полей на физико-хими­ческие процессы, механизм их лечебного действия ос­нован на индуцировании в тканях вихревых токов, вы­деляющих очень слабое тепло; последнее, в свою оче­редь, активизирует кровообращение, процессы обмена и усиливает регенерацию, а также обеспечивает седатив­ный и болеутоляющий эффекты5,11.

Следует отметить, что в комплексе реабилитацион­ной терапии больных эндометриозом рекомендуется ис­пользовать радоновые воды в виде общих ванн, влага­лищных орошений, микроклизм. Радонотерапия оказы­вает благоприятное воздействие на организм больных с различными аллергическими реакциями, хроническим

колитом и невралгией тазовых нервов.

СПИСОК ЛИТЕРАТУРЫ

1. Арсланян КН., Стругацкий В.М., Адамян Л.В., Волобуев А.И. Ранняя восстановительная физиотерапия после микрохирурги­ческих операций на маточных трубах. Акушерство и гинеколо­гия, 1993, 2, 45-48

2. Железное Б.И., Стрижаков А.Н. Генитальный эндометриоз. «Медицина», Москва, 1985

3. Илларионов В.Е. Основы лазерной терапии. «Респект», Моск­ва, 1992

4. Козлов В.И., Буйлин В.А., Самойлов Н.1., Марков И.И. Основы лазерной физио- и рефлексотерапии. «Здоров"я», Киев-Самара, 1993

5. Оржешковский В.В., Волков Е. С, Тавриков НА. и др. Клини­ческая физиотерапия. «Здоров "я», Киев, 1984

6. Савельева Г.М., Бабинская Л.Н., Бреусенко В.1. и др. Проф­илактика спаечного процесса после хирургического вмешатель­ства у гинекологических больных в репродуктивном периоде. Аку­шерство и гинекология, 1995, 2, 36-39

МЕХАНИЗМЫ БИОЛОГИЧЕСКИХ ЭФФЕКТОВ НИЗКОИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Биологическое (терапевтическое) действие низкоинтенсивного лазерного излучения (когерентного, монохроматического и поляризованного света) может быть условно подразделено на три основные категории:

1) первичные эффекты (изменение энергетики электронных уровней молекул живого вещества, стереохимическая перестройка молекул, локальные термодинамические нарушения, возникновение градиентов концентрации внутриклеточных ионов в цитозоле);

2) вторичные эффекты (фотореактивация, стимуляция или угнетение биопроцессов, изменение функционального состояния как отдельных систем биологической клетки, так и организма в целом);

3) эффекты последействия (цитопатический эффект, образование токсических продуктов тканевого обмена, эффекты отклика системы нейрогуморального регулирования и др.).

Все это многообразие эффектов в тканях определяет широчайший спектр адаптивных и саногенетических реакций организма на лазерное воздействие. Ранее было показано, что начальным пусковым моментом биологического действия НИЛИ является не фотобиологическая реакция как таковая, а локальный нагрев (более корректно – локальное термодинамическое нарушение), и мы имеем дело в данном случае с термодинамическим, а не с фотобиологическим эффектом. Это объясняет многие, если не все, известные явления в этой области биологии и медицины.

Нарушение термодинамического равновесия вызывает высвобождение ионов кальция из внутриклеточного депо, распространение волны повышенной концентрации Ca2+ в цитозоле клетки, запускающей кальций-зависимые процессы. После этого развиваются вторичные эффекты, представляющие собой комплекс адаптационных и компенсационных реакций , возникающих в тканях, органах и целостном живом организме, среди которых выделяют следующие:

1) активизацию метаболизма клеток и повышение их функциональной активности;

2) стимуляцию репаративных процессов;

3) противовоспалительное действие;

4) активизацию микроциркуляции крови и повышение уровня трофического обеспечения тканей;

5) аналгезирующее действие;

6) иммуностимулирующее действие;

7) рефлексогенное действие на функциональную активность различных органов и систем.

Необходимо обратить внимание на два важнейших момента. Во-первых, в каждом из перечисленных пунктов априорно задана однонаправленность влияния НИЛИ (стимуляция, активация и др.). Как будет показано ниже, это не совсем так, и лазерное излучение может вызывать прямо противоположные эффекты, что хорошо известно из клинической практики. Во-вторых, все эти процессы – кальций-зависимые. Рассмотрим теперь, как именно происходят представленные физиологические изменения, приведя в качестве примера лишь небольшую часть известных путей их регулирования.

Активизация метаболизма клеток и повышение их функциональной активности происходят в первую очередь вследствие кальций-зависимого повышения редокс-потенциала митохондрий, их функциональной активности и синтеза АТФ.

Стимуляция репаративных процессов зависит от Са2+ на самых различных уровнях. Кроме активизации работы митохондрий при повышении концентрации свободного внутриклеточного кальция активируются протеинкиназы, принимающие участие в образовании мРНК. Также ионы кальция являются аллостерическими ингибиторами мембранно-связанной тиоредоксинредуктазы – фермента, контролирующего сложный процесс синтеза пуриновых дизоксирибонуклеотидов в период активного синтеза ДНК и деления клеток. В физиологии раневого процесса, кроме того, активно участвует основной фактор роста фибробластов (bFGF), синтез которого и активность зависят от концентрации Са2+.

Противовоспалительное действие НИЛИ и его влияние на микроциркуляцию обусловлены, в частности, кальций-зависимым высвобождением медиаторов воспаления – таких как цитокины, – а также кальций-зависимым выделением клетками эндотелия вазодилататора – оксида азота (NO) – предшественника эндотелиального фактора расслабления стенок сосудов (EDRF).

Поскольку кальций-зависимым является экзоцитоз, в частности высвобождение нейромедиаторов из синаптических везикул, процесс нейрогуморальной регуляции полностью контролируется концентрацией Са2+, а следовательно, подвержен и влиянию НИЛИ. Кроме того, известно, что Са2+ является внутриклеточным посредником действия ряда гормонов, в первую очередь медиаторов ЦНС и ВНС, что также предполагает участие эффектов, вызванных лазерным излучением, в нейрогуморальной регуляции.

Взаимодействие нейроэндокринной и иммунной систем изучено мало, однако установлено, что цитокины, в частности ИЛ-1 и ИЛ-2, действуют в обоих направлениях, играя роль модуляторов взаимодействия этих двух систем. НИЛИ может влиять на иммунитет как опосредованно через нейроэндокринную регуляцию, так и непосредственно через иммунокомпетентные клетки (что доказано в экспериментах in vitro). К числу ранних пусковых моментов бласттрансформации лимфоцитов относится кратковременное повышение концентрации свободного внутриклеточного кальция, который активирует протеинкиназу, принимающую участие в образовании мРНК в Т-лимфоцитах, что, в свою очередь, является ключевым моментом лазерной стимуляции Т-лимфоцитов. Воздействие НИЛИ на клетки фибробластов in vitro приводит также к повышенной генерации внутриклеточного эндогенного g-интерферона.

Кроме физиологических реакций, описанных выше, для понимания целостной картины необходимо также знать, каким образом лазерное излучение может влиять на механизмы нейрогуморальной регуляции . НИЛИ рассматривается как неспецифический фактор, действие которого направлено не против возбудителя или симптомов болезни, а на повышение сопротивляемости (жизненности) организма. Это биорегулятор как клеточной биохимической активности, так и физиологических функций организма в целом – нейроэндокринной, эндокринной, сосудистой и иммунной систем.

Данные научных исследований позволяют с полной уверенностью говорить о том, что лазерное излучение не является основным терапевтическим агентом на уровне организма в целом, но как бы устраняет препятствия, дисбаланс в центральной нервной системе, мешающий саногенетической функции мозга. Это осуществляется возможным изменением под действием НИЛИ физиологии тканей как в сторону усиления, так и в сторону угнетения их метаболизма в зависимости от исходного состояния организма и дозы воздействия, что и приводит к затуханию процессов патологического характера, нормализации физиологических реакций и восстановлению регулирующих функций нервной системы. Лазерная терапия при правильном применении позволяет организму восстановить нарушенное системное равновесие.

Рассмотрение ЦНС и ВНС как независимых систем регулирования в последние годы уже перестало устраивать многих исследователей. Находится все больше фактов, подтверждающих их самое тесное взаимодействие. На основе анализа многочисленных данных научных исследований была предложена модель единой регулирующей и поддерживающей гомеостаз системы, названной нейродинамическим генератором (НДГ).

Основная идея модели НДГ заключается в том, что дофаминергический отдел ЦНС и симпатический отдел ВНС, объединенные в единую структуру, названную В.В. Скупченко (1991) фазическим моторно-вегетативным (ФМВ) системокомплексом, тесно взаимодействует с другой, зеркально взаимосодействующей структурой – тоническим моторно-вегетативным (ТМВ) системокомплексом. Представленный механизм функционирует не столько как рефлекторная система реагирования, а как спонтанный нейродинамический генератор, перестраивающий свою работу по принципу самоорганизующихся систем.

Появление фактов, свидетельствующих об одновременном участии одних и тех же структур мозга в обеспечении и соматического, и вегетативного регулирования, воспринимается сложно, поскольку они не укладываются в известные теоретические построения. Однако игнорировать то, что подтверждается повседневной клинической практикой, мы не можем. Такой механизм, обладая определенной нейродинамической подвижностью, не только способен обеспечивать непрерывно меняющуюся адаптивную настройку регуляции всей гаммы энергетических, пластических и метаболических процессов, но управляет, по сути, всей иерархией регулирующих систем от клеточного уровня до центральной нервной системы, включая эндокринные и иммунологические перестройки. В клинической практике первые положительные результаты подобного подхода к механизму нейрогуморальной регуляции были получены в неврологии и при лечении келоидных рубцов.

В норме происходят постоянные переходы из фазического состояния в тоническое и обратно. Стресс вызывает включение фазических (адренергических) механизмов регуляции, как общий адаптационный синдром. При этом как ответная реакция на превалирование дофаминергического влияния запускаются тонические (ГАМК-ергические и холинергические) механизмы регулирования. Последнее обстоятельство осталось за рамками исследований Г. Селье, а является, по сути, важнейшим моментом, объясняющим принцип саморегулирующей роли НДГ. В норме две системы, взаимодействуя, восстанавливают нарушенный баланс.

Многие заболевания представляются нам связанными с превалированием одного из состояний данной регулирующей системы. При длительном, нескомпенсированном влиянии стрессорного фактора происходит сбой в работе НДГ и патологическая фиксация его в одном из состояний, в фазическом, что бывает чаще, или в тонической фазе, как бы переходя в режим постоянной готовности к ответу на раздражение. Таким образом, стресс или постоянное нервное напряжение могут сместить гомеостаз и зафиксировать его патологически либо в фазическом, либо в тоническом состоянии, что и вызывает развитие соответствующих заболеваний, лечение которых должно быть в первую очередь направлено на коррекцию нейродинамического гомеостаза.

Сочетание различных причин (наследственная предрасположенность, определенный конституциональный тип, различные экзогенные и эндогенные факторы и др.) приводит к началу развития какой-либо конкретной патологии у конкретного индивидуума, но причина заболевания общая – устойчивое превалирование одного из состояний НДГ.

Еще раз обращаем внимание на важнейший факт, что не только ЦНС и ВНС регулируют различные процессы на всех уровнях, но и, наоборот, локально действующий внешний фактор, например НИЛИ, может привести к системным сдвигам, устраняя истинную причину заболевания – дисбаланс НДГ, и при локальном действии НИЛИ устранить генерализованную форму заболевания. Это необходимо обязательно учитывать при разработке методик лазерной терапии.

Теперь станов ится понятной возможность разнонаправленного влияния НИЛИ в зависимости от дозы воздействия – стимуляция физиологических процессов или их угнетение. Универсальность действия НИЛИ обусловлена в том числе тем, что в зависимости от дозы лазерным воздействием как стимулируются, так и подавляются пролиферация и раневой процесс.

Чаще всего в методиках используются минимальные, общепринятые дозы лазерного воздействия (1–3 Дж/см2 для непрерывного излучения), но иногда в клинической практике требуется именно условно НЕстимулирующее действие НИЛИ. Сделанные из предложенной ранее модели выводы блестяще подтвердились на практике при обосновании эффективных методик лечения витилиго и болезни Пейрони.

Итак, в биологических эффектах НИЛИ в качестве первичного действующего фактора выступают локальные термодинамические нарушения, вызывающие цепь изменений кальций-зависимых физиологических реакций организма. Причем направленность этих реакций может быть различна, что определяется дозой и локализацией воздействия, а также исходным состоянием самого организма.

Разработанная концепция позволяет не только объяснить практически все уже имеющиеся факты, но и на основе данных представлений сделать выводы как о прогнозировании результатов влияния НИЛИ на физиологические процессы, так и о возможности повышении эффективности лазерной терапии.

Показания и противопоказания к применению НИЛИ

Основное показание – целесообразность применения , в частности:

Болевые синдромы нейрогенного и органического характера;

Нарушение микроциркуляции;

Нарушение иммунного статуса;

Сенсибилизация организма к лекарствам, аллергические проявления;

Заболевания воспалительного характера;

Необходимость стимулирования репаративных и регенеративных процессов в тканях;

Необходимость стимулирования систем регуляции гомеостаза (рефлексотерапия).

Противопоказания:

Сердечно-сосудистые заболевания в фазе декомпенсации;

Нарушение мозгового кровообращения II степени;

Легочная и легочно-сердечная недостаточность в фазе декомпенсации;

Злокачественные новообразования;

Доброкачественные образования со склонностью к прогрессированию;

Заболевания нервной системы с резко повышенной возбудимостью;

Лихорадки невыясненной этиологии;

Заболевания кроветворной системы;

Печеночная и почечная недостаточность в стадии декомпенсации;

Сахарный диабет в стадии декомпенсации;

Гипертиреоз;

Беременность во всех сроках;

Психические заболевания в стадии обострения;

Повышенная чувствительность к светолечению (фотодерматит и фотодерматоз, порфириновая болезнь, дискоидная и системная красная волчанка).

Необходимо заметить, что абсолютных специфических противопоказаний для лазерной терапии нет . Однако в зависимости от состояния пациента, фазы течения заболевания и др. возможны ограничения использования НИЛИ. В некоторых областях медицины – онкологии, психиатрии, эндокринологии, фтизиатрии и педиатрии – строго обязательно, чтобы лазерная терапия назначалась и проводилась специалистом или при его непосредственном участии.

Поиск новых средств и методов лечения дерматозов обусловлен непереносимостью многих лекарственных препаратов, развитием аллергических реакций различной степени тяжести, побочным действием препаратов, низкой терапевтической эффективностью общепринятых способов лечения, необходимостью совершенствовать и оптимизировать существующие методики. В связи с этим изучение возможностей различных физических факторов — ультразвука, криотерапии, фототерапии, магнитного и лазерного излучения — является важной практической задачей современной дерматологии. В данной статье описаны основные физические и терапевтические свойства лазерного излучения, а также спектр его применения в дерматологии и косметологии.

Термин «лазер» представляет собой аббревиатуру от английского Light Amplification by Simulated Emission of Radiation — усиление света с помощью индуцированного излучения.

Лазер (или оптический квантовый генератор) — это техническое устройство, продуцирующее электромагнитное излучение в виде направленного сфокусированного высококогерентного монохроматического пучка.

Физические свойства лазерного излучения

Когерентность излучения лазеров определяет постоянство фазы и частоты (длины волны) на протяжении работы лазера, т. е. это свойство, обусловливающее исключительную способность к концентрации световой энергии по разным параметрам: в спектре — очень узкая спектральная линия излучения; во времени — возможность получения сверхкоротких импульсов света; в пространстве и по направлению — возможность получения направленного пучка с минимальной расходимостью и фокусированием всего излучения в малой области с размерами порядка длины волны. Все эти параметры позволяют осуществлять локальные воздействия, вплоть до клеточного уровня, а также эффективно передавать излучение по волоконным световодам для дистанционного воздействия.

Расходимость лазерного излучения — это плоский или телесный угол, характеризующий ширину диаграммы направленности излучения в дальней зоне по заданному уровню распределения энергии или мощности лазерного излучения, определяемому по отношению к его максимальному значению.

Монохроматичность — спектральная ширина излучения и характерная длина волны для каждого источника излучения.

Поляризация — проявление поперечности электромагнитной волны, т. е. сохранение постоянного ортогонального положения взаимно перпендикулярных векторов напряженности электрического и магнитного полей по отношению к скорости распространения волнового фронта.

Высокая интенсивность лазерного излучения позволяет сконцентрировать в малом объеме значительную энергию, что вызывает многофотонные и другие нелинейные процессы в биологической среде, локальный тепловой нагрев, быстрое испарение, гидродинамический взрыв.

К энергетическим параметрам лазеров относятся: мощность излучения, измеряется в ваттах (Вт); энергия излучения, измеряется в джоулях (Дж); длина волны, измеряется в микрометрах (мкм); доза излучения (или плотность энергии) — Дж/смІ.

Лазерное излучение по своим свойствам отличается от других видов электромагнитного излучения (рентгеновское и высокочастотное γ-излучение), используемых в медицине. БСльшая часть лазерных источников излучает в ультрафиолетовом или инфракрасном диапазонах электромагнитных волн, при этом основное отличие лазерного излучения от света обычных тепловых источников заключается в его пространственной и временнСй когерентности. Благодаря этому энергию лазерного излучения относительно легко передавать на значительное расстояние и концентрировать в малых объемах или в небольших временны′х интервалах.

Лазерное излучение, воздействующее на биологический объект с лечебной целью, является внешним физическим фактором. При поглощении энергии лазерного излучения биообъектом все процессы, происходящие при этом, подчиняются физическим законам (отражение, поглощение, рассеивание). Степень отражения, рассеивания и поглощения зависит от состояния кожных покровов: влажности, пигментации, кровенаполнения и отечности кожи и подлежащих тканей.

Глубина проникновения лазерного излучения зависит от длины волны, уменьшаясь от длинноволнового к коротковолновому излучению. Таким образом, инфракрасное (0,76-1,5 мкм) и видимое излучения обладают наибольшей проникающей способностью (3-5-7 см), а ультрафиолетовое и другие длинноволновые излучения сильно поглощаются эпидермисом и поэтому проникают в ткани на небольшую глубину (1-1,5 см).

Применение лазера в медицине:

  • деструктивное воздействие на биологические структуры и процессы - коагуляция (в офтальмологии, онкологии, дерматовенерологии) и рассечение тканей (в хирургии);
  • биостимуляция (в физиотерапии);
  • диагностика - изучение биологических структур и процессов (допплеровская спектроскопия, проточная цитофотометрия, голография, лазерная микроскопия и др.).

Применение лазеров в дерматологии

В дерматологии используется лазерное излучение двух типов: низкоинтенсивное — в качестве лазерной терапии и высокоинтенсивное — в лазерной хирургии.

По типу активной среды лазеры делятся:

  • на твердотельные (рубиновый, неодимовый);
  • газовые - HE-NE (гелий-неоновый), СО 2 ;
  • полупроводниковые (или диодные);
  • жидкостные (на неорганических или органических красителях);
  • лазеры на парах металлов (самые распространенные: на парах меди или золота).

По типу излучения существуют ультрафиолетовые, видимые и инфракрасные лазеры. При этом и полупроводниковые лазеры, и лазеры на парах металлов могут быть как низкоинтенсивными (для терапии), так и высокоинтенсивными (для хирургии).

Низкоинтенсивное лазерное излучение (НИЛИ) используется для лазерной терапии кожных заболеваний. Действие НИЛИ заключается в активации ферментов мембран клеток, увеличении электрического заряда белков и фосфолипидов, стабилизации мембранных и свободных липидов, увеличении оксигемоглобина в организме, активации процессов тканевого дыхания, повышении синтеза цАМФ, стабилизации окислительного фосфорилирования липидов (снижении свободно-радикальных комплексов).

При воздействии НИЛИ на биоткань наблюдаются следующие основные эффекты:

  • противовоспалительный,
  • антиоксидантный,
  • обезболивающий,
  • иммуномодулирующий.

Выраженный терапевтический эффект при лечении различных по этиологии и патогенезу заболеваний человека предполагает существование биостимулирующего механизма действия лазерного излучения небольшой мощности. Исследователи считают реакцию иммунной системы на лазерное излучение одним из важнейших факторов в механизме лазерной терапии, что, по их мнению, является пусковым моментом в реакции всего организма.

Противовоспалительный эффект

При воздействии НИЛИ на кожу наблюдается противовоспалительный эффект: активизируется микроциркуляция в тканях, расширяются сосуды, увеличивается число функционирующих капилляров и формируются коллатерали, повышается кровоток в тканях, нормализуется проницаемость клеточных мембран и осмотическое давление в клетках, повышается синтез цАМФ. Все эти процессы приводят к уменьшению интерстициального отека, гиперемии, шелушения, зуда, наблюдается отграниченность патологического процесса (очага), стихание острых воспалительных проявлений в течение 2-3 дней. Воздействие НИЛИ на область воспаления в коже, помимо противовоспалительного эффекта, обеспечивает антибактериальное и фунгицидное действие. По литературным данным, количество бактерий и грибковой флоры снижается на 50% в течение 3-5 мин лазерного облучения патологической зоны.

С учетом противовоспалительного и антибактериального эффекта НИЛИ при местном воздействии на кожу лазеры применяются в лечении таких заболеваний, как пиодермии (фолликулиты, фурункулы, импетиго, угревая болезнь, стрептостафилодермии, шанкриформная пиодермия), трофические язвы, аллергодерматозы (истинная экзема, микробная экзема, атопический дерматит, крапивница). Также НИЛИ используется при дерматитах, ожогах, псориазе, красном плоском лишае, склеродермии, витилиго, заболеваниях слизистой оболочки полости рта и красной каймы губ (буллезный пемфигоид, многоформная экссудативная эритема, хейлиты, стоматиты и т. д.).

Антиоксидантный эффект

При воздействии НИЛИ наблюдается антиоксидантный эффект, который обеспечивается за счет снижения выработки свободнорадикальных комплексов, когда происходит предохранение клеточных и субклеточных компонентов от повреждения, а также обеспечение целостности органелл. Данный эффект связан с патогенезом значительного количества кожных болезней и механизмом старения кожи. Как показали исследования Г. Е. Брилль и соавторов, НИЛИ активизирует ферментативное звено антиоксидантной защиты в эритроцитах и несколько ослабляет стимулирующее влияние стресса на перекисное окисление липидов в эритроцитах.

Антиоксидантный эффект НИЛИ используется при лечении аллергодерматозов, хронических заболеваний кожи и при проведении омолаживающих процедур.

Обезболивающий эффект

Обезболивающий эффект при воздействии НИЛИ осуществляется за счет блокады болевой чувствительности по нервным волокнам. Одновременно наблюдается легкий седативный эффект. Также обезболивающий эффект обеспечивается за счет снижения чувствительности рецепторного аппарата кожи, повышения порога болевой чувствительности, стимуляции деятельности опиатных рецепторов.

Совокупность обезболивающего и легкого седативного эффектов играет важную роль, так как при различных кожных заболеваниях зуд (как извращенное проявление боли) является основным симптомом, нарушающим качество жизни больного. Эти эффекты позволяют применять НИЛИ при аллергодерматозах, зудящих дерматозах, красном плоском лишае.

Иммуномодулирующий эффект

В последнее время доказано, что при различных кожных заболеваниях наблюдается дисбаланс иммунной системы. Как при местном облучении кожи, так и при внутривенном облучении крови НИЛИ оказывает иммуномодулирующий эффект — устраняется дисглобулинемия, повышается активность фагоцитоза, происходит нормализация апоптоза и активация нейроэндокринной системы.

Некоторые методики с использованием НИЛИ

Аллергодерматозы (атопический дерматит, хроническая экзема, рецидивирующая крапивница). Проводят облучение НИЛИ венозной крови инвазивным или неинвазивным методом, а также локальную лазеротерапию.

Инвазивный метод заключается в венопункции (венесекции) в области лучевой вены, заборе крови в количестве 500-750 мл, которая пропускается через лазерный луч, после чего следует реинфузия облученной крови. Процедура проводится однократно, 1 раз в полгода с экспозицией 30 мин.

Неинвазивный метод заключается в подведении лазерного луча в проекцию лучевой вены. В это время больной сжимает и разжимает кулак. В результате в течение 30 мин облучается 70% крови. Метод безболезненный, не требует специальных условий, предполагает использование как непрерывного, так и импульсного лазерного излучения — от 5 до 10 000 Гц. Установлено, что колебания в 10 000 Гц соотносятся с колебаниями на поверхности мембран клеток.

Облучение крови производится только гелий-неоновым лазером, длиной волны 633 нм, мощностью 60,0 мВт и полупроводниковыми лазерами с длиной волны 0,63 мкм.

С. Р. Утц и соавторы для лечения тяжелых форм атопического дерматита у детей, применив неинвазивный метод, использовали лазерные головки с отражающей поверхностью; на кожу в месте облучения наносили иммерсионное масло, а головкой создавали компрессию. Зоной облучения служила большая подкожная вена на уровне медиальной лодыжки.

Перечисленные методы дополняют локальной лазеротерапией. Рекомендуемые максимальные размеры площадей для проведения лазерной терапии в течение одного сеанса: для кожи лица и слизистых оболочек полости носа, рта и губ — 10 смІ, для остальных участков кожи — 20 смІ. При симметричных поражениях целесообразно в течение одного сеанса последовательно работать на двух контралатеральных зонах с равным разделением рекомендуемой площади.

При работе на коже лица категорически запрещается направлять луч на глаза и веки. Отсюда следует, что излучение гелий-неонового лазера не следует применять для лечения заболеваний кожи век.

Излучение гелий-неонового лазера применяют преимущественно в дистанционном режиме. Для лечения заболеваний кожи с площадью поражения свыше 1-2 смІ пятно лазерного луча перемещают со скоростью 1 см/с по всей выбранной для сеанса площади так, чтобы она вся была равномерно подвергнута облучению. Целесообразен спиральный вектор сканирования — от центра к периферии.

При атопическом дерматите облучение проводят по полям с захватом всей пораженной поверхности кожи по конфигурации патологического участка от периферии к центру, с облучением здоровых тканей в пределах 1-1,5 см или сканированием лазерным лучом со скоростью 1 см/с. Доза облучения на сеанс составляет 1-30 Дж/смІ, длительность сеанса — до 25 мин, курс из 5-15 сеансов. Лечение можно проводить на фоне антиоксидантной терапии и витаминотерапии.

При облучении венозной крови с помощью НИЛИ у больных с аллергодерматозами мы добиваемся всех вышеупомянутых эффектов лазерного излучения, что способствует быстрейшему выздоровлению и снижению случаев рецидивов.

Псориаз. При псориазе используется облучение крови, применяется лазерная индуктотермия надпочечников, а также локальное воздействие на бляшки. Проводится обычно инфракрасным (0,89 нм, 3-5 Вт) или гелий-неоновым лазерами (633 нм, 60 мВт).

Лазерная индуктотермия надпочечников проводится контактно на кожу в проекции надпочечников, от 2 до 5 мин, в зависимости от веса больного, курс — 15-25 сеансов. Лазерное облучение проводят в стационарной и регрессирующей стадиях псориаза, обеспечивая выработку эндогенного кортизола организмом больного, что приводит к разрешению псориатических элементов и позволяет добиться выраженного противовоспалительного эффекта.

Показана эффективность лазерной терапии при псориатическом артрите. В ходе лечения облучают пораженные суставы, иногда местную терапию сочетают с облучением надпочечников. После двух сеансов отмечается обострение, которое становится менее интенсивным к 5-му сеансу, к 7-10-му сеансам состояние стабилизируется. Курс лазеротерапии состоит из 14-15 сеансов.

Принципиально новым направлением в терапии псориаза и витилиго является разработка и клиническое применение эксимерного лазера на основе хлорида ксенона, который представляет собой источник узкополосного ультрафиолетового (UVB) излучения длиной 308 нм. Поскольку энергия направляется только на область бляшки и здоровая кожа не подвергается воздействию, очаги поражения можно облучать с помощью излучения с высокой плотностью энергии (от 100 мДж/смІ и выше), что усиливает антипсориатическое действие. Избежать вапоризации и термических поражений позволяют короткие импульсы до 30 нс. Узкий монохроматический спектр излучения с длиной 308 нм действует только на один хромофор, вызывая гибель мутагенных ядер кератиноцитов и активируя Т-клеточный апоптоз. Ограничивают внедрение в широкую клиническую практику эксимерных лазерных систем их высокая стоимость, отсутствие методического обеспечения, недостаточная изученность отдаленных результатов, сложности, связанные с расчетом глубины воздействия по мере истончения бляшек в ходе терапии.

Красный плоский лишай (КПЛ). При КПЛ обычно используется методика местного облучения высыпаний контактным способом, скользящими движениями от периферии к центру. Экспозиция — от 2 до 5 мин, в зависимости от площади поражения. Суммарная доза не должна превышать 60 Дж/смІ. Такие процедуры обеспечивают противовоспалительный и противозудный эффект. Для рассасывания бляшек экспозицию увеличивают до 15 мин.

При локализации КПЛ на волосистой части головы лазерное облучение проводится с экспозицией до 5 мин. Кроме вышеупомянутых эффектов, достигается стимуляция роста волос в зоне облучения.

При применении данных методов используется инфракрасное, гелий-неоновое и на парах меди лазерное излучение. При КПЛ также может проводиться облучение венозной крови.

Пиодермии. При гнойничковых заболеваниях кожи также применяется методика облучения НИЛИ венозной крови и методика местного облучения контактным способом, скользящими движениями с экспозицией до 5 мин.

Данные методики позволяют достичь противовоспалительного, антибактериального (бактериостатического и бактериоцидного) эффектов, а также стимуляции репаративных процессов.

При рожистом воспалении применяют НИЛИ контактно, дистанционно и внутривенно. При использовании лазерной терапии на 2-4 дня раньше нормализуется температура тела, на 4-7 сут быстрее наступает регрессия локальных проявлений, на 2-5 сут быстрее происходят очищение и все процессы репарации. Выявлено повышение фибринолитической активности, содержания Т- и В-лимфоцитов и их функциональной активности, улучшение микроциркуляции. Рецидивы при традиционном лечении составляют 43%, при применении НИЛИ — 2,7%.

Васкулиты. Для лечения васкулитов кожи В. В. Кулага и соавторы предлагают инвазивный метод НИЛИ. Из вены больного берут 3-5 мл крови, помещают ее в кювету и подвергают облучению гелий-неоновым лазером, мощностью 25 мВт, в течение 2-3 мин, после чего 1-2 мл облученной крови вводят в очаги поражения. За один сеанс делают 2-4 инъекции, в течение недели — 2-3 сеанса, курс лечения состоит из 10-12 сеансов. Другие авторы рекомендуют внутрисосудистое облучение крови энергией гелий-неонового лазера мощностью 1-2 мВт длительностью 10-30 мин, сеансы проводят ежедневно или через день, курс состоит из 10-30 сеансов.

Склеродермия. Ж. Ж. Рапопорт и соавторы предлагают проводить сеансы лазерной терапии с помощью гелий-неонового лазера через световод, введенный по игле на границе здоровой и пораженной кожи. Сеанс длится 10 мин, доза — 4 Дж/смІ. Другая методика заключается в наружном облучении очагов поражения излучением мощностью 3-4 мВт/смІ с экспозицией 5-10 мин, курс — 30 сеансов.

Вирусные дерматозы. Достаточно успешно лазерная терапия применяется при опоясывающем лишае. А. А. Каламкарян и соавторы предложили дистанционное посегментарное облучение очагов гелий-неоновым лазером мощностью 20-25 мВт, при котором луч лазера перемещается по ходу нервных стволов и на места высыпаний. Сеансы проводятся ежедневно, длятся от 3 до 20 дней.

Витилиго. Для лечения витилиго применяют излучение гелий-неонового лазера и наружные фотосенсибилизаторы, например анилиновые красители. Непосредственно перед процедурой на очаги наносят раствор красителя (бриллиантовый зеленый, метиленовый синий, фукорцин), после чего проводят локальное облучение расфокусированным лазерным лучом мощностью 1-1,5 мВт/смІ. Продолжительность сеанса оставляет 3-5 мин, ежедневно, курс 15-20 сеансов, повторные курсы возможны через 3-4 нед.

Облысение. Применение лазера на парах меди в эксперименте, проводившемся на коже, по данным электронной микроскопии, выявило выраженное усиление пролиферативной и метаболической активности в эпидермоцитах, в том числе в волосяных фолликулах. Отмечено расширение микрососудов сосочкового слоя дермы. В соединительной ткани, в частности в фибробластах, обнаружено относительное нарастание объема внутриклеточных структур, связанных с синтезом коллагена. Зарегистрировано возрастание активности в нейтрофилах, эозинофилах, макрофагах и тучных клетках. Перечисленные изменения лежат в основе лечения облысения. Уже после 4-5-го сеанса лазерной терапии отмечается рост пушковых волос на голове.

Описанная выше техника лечения витилиго применяется также для лечения очагового облысения.

Рубцы. С помощью световой и электронной микроскопии изучались изменения, которые происходят в кожных рубцах в результате применения лазерного излучения у человека. Так, применение ультрафиолетового и гелий-неонового НИЛИ не вызывало существенных изменений вследствие неглубокого проникновения лазерной энергии. После использования излучения инфракрасного лазера растет число резорбирующих коллаген фибробластов, при этом коллагеновые волокна истончаются, несколько снижается число тучных клеток и выделение секреторных гранул. В некоторой степени увеличивается относительная объемная доля микрососудов.

При использовании НИЛИ для профилактики грубого рубцевания кожных хирургических ран выявлено снижение содержания активных фибробластов и, следовательно, коллагена.

Использование высокоинтенсивного лазерного излучения (ВИЛИ)

ВИЛИ получают с помощью СО 2 , Er:YAG-лазера и аргонового лазера. СО 2 -лазер в основном используется для лазерного удаления (деструкции) папиллом, бородавок, кондилом, рубцов и дермабразии; Er:YAG-лазер — для лазерного омолаживания кожи. Существуют также комбинированные СО 2 -, Er:YAG-лазерные системы.

Лазерная деструкция. ВИЛИ применяется в дерматологии и косметологии для деструкции новообразований, удаления ногтевых пластинок, а также для лазерной вапоризации папиллом, кондилом, невусов и бородавок. При этом мощность излучения может составлять от 1,0 до 10,0 Вт.

В клинической практике применяют неодимовый и СО 2 -лазеры. При применении СО 2 -лазера меньше повреждаются окружающие ткани, а неодимовый лазер обладает лучшим гемостатическим эффектом. Помимо того, что лазер физически удаляет поражения, исследования показали токсическое действие лазерного излучения на вирус папилломы человека (ВПЧ). Путем изменения мощности лазера, размера пятна и времени экспозиции можно контролировать глубину коагуляции. Для выполнения процедур необходим хорошо обученный персонал. При использовании лазеров требуется обезболивание, однако местной или локальной анестезии оказывается достаточно, что позволяет проводить процедуры в амбулаторных условиях. Однако 85% больных все равно отмечают легкую болезненность. Метод имеет примерно такую же эффективность, как электрокоагуляция, но менее болезнен, вызывает меньше послеоперационных побочных эффектов, включая менее выраженное рубцевание, дает хороший косметический эффект. Эффективность метода достигает 80-90% при терапии остроконечных кондилом.

Лазеротерапию можно успешно применять для лечения распространенных, устойчивых к другой терапии бородавок. При этом проводится несколько курсов лечения, что позволяет повысить процент излечения с 55 (после 1 курса) до 85%. Однако в особых случаях при многолетнем неэффективном лечении различными методами эффективность лазеротерапии оказывается не столь высока. Даже после многократных курсов лечения она позволяет прекратить рецидивирование примерно лишь у 40% больных. Тщательные исследования показали, что столь невысокий показатель связан с тем, что СО2-лазер неэффективен для устранения генома вируса из поражений, устойчивых к лечению (по данным ПЦР молекулярно-биологическое излечение наступает у 26% больных).

Лазерную терапию можно применять для лечения генитальных бородавок у подростков. Показана высокая эффективность и безопасность метода при лечении данного контингента пациентов, в большинстве случаев для излечения достаточно 1 процедуры.

Для уменьшения количества рецидивов остроконечных кондилом (частота рецидивов от 4 до 30%) рекомендуют применять после процедуры удаления лазерное «очищение» окружающей слизистой. При использовании методики «очищения» часто наблюдаются дискомфорт и болезненность. При наличии больших кондилом перед лазеротерапией рекомендуется их предварительное разрушение, в частности электрокаутером. Это, в свою очередь, позволяет избежать побочных эффектов, связанных с электрорезекцией. Возможной причиной рецидивов является сохранение генома ВПЧ в коже рядом с участками обработки, что было выявлено как после применения лазера, так и после электрохирургического иссечения.

Наиболее тяжелыми побочными эффектами лазерной деструкции являются: изъязвления, кровотечение, вторичное инфицирование раны. После лазерного иссечения бородавок осложнения развиваются у 12% больных.

Как и при использовании электрохирургических методов, происходит выделение ДНК ВПЧ с дымом, что требует соответствующих мер предосторожности во избежание заражения носоглотки врача. В то же время в некоторых исследованиях показано отсутствие различий в частоте выявления бородавок у хирургов, занимающихся лазеротерапией, в сравнении с другими группами населения. Не обнаружено существенных различий в частоте появления бородавок и между группами врачей, применявших и не применявших защитные средства и эвакуаторы дыма. Тем не менее, поскольку типы ВПЧ, вызывающие генитальные бородавки, способны инфицировать слизистую верхних дыхательных путей, лазерный дым, содержащий эти вирусы, опасен для хирургов, производящих вапоризацию.

Широкому распространению методов лазерной деструкции препятствует высокая стоимость качественного оборудования и необходимость подготовки опытного персонала.

Лазерная эпиляция. В основе лазерной эпиляции (термолазерной эпиляции) лежит принцип селективного фототермолиза. Световая волна со специально подобранными характеристиками проходит через кожу и, не повреждая ее, избирательно поглощается меланином, содержащимся в больших количествах в волосяных луковицах. Это вызывает нагрев волосяных луковиц (фолликулов) с последующей их коагуляцией и разрушением. Для разрушения фолликулов требуется, чтобы к корню волоса было подведено необходимое количество световой энергии. Для эпиляции используется излучение мощностью от 10,0 до 60,0 Вт. Так как волосы находятся в разных стадиях роста, то для полной эпиляции требуется несколько процедур. Они проводятся на любом участке тела, бесконтактно, не менее 3 раз с интервалом 1-3 мес.

Основными преимуществами лазерной эпиляции являются комфортность и безболезненность процедур, достижение стойкого и долговременного результата, безопасность, высокая скорость обработки (одним импульсом одновременно удаляются сотни фолликулов), неинвазивность, бесконтактность. Таким образом, этот метод на сегодня представляет собой самый эффективный и наиболее экономически выгодный способ эпиляции. Существенно снижает эффективность процедур длительное пребывание на солнце и загар (естественный или искусственный).

Лазерная дермабразия. Дермабразия — это снятие верхних слоев эпидермиса. После воздействия остается достаточно мягкий и безболезненный лазерный струп. В течение 1 мес после процедуры под струпом формируется новая молодая кожа. Применяется лазерная дермабразия для омолаживания кожи лица и шеи, сведения татуировок, шлифовки рубцов, а также в качестве лечения постакне у больных тяжелыми формами угревой болезни.

Лазерное омоложение кожи. С помощью лазера проводится точная и поверхностная абляция с минимальным тепловым повреждением и без кровотечений, что приводит к быстрому заживлению и исчезновению эритемы. Для этого используют в основном Er:YAG-лазеры, которые хороши для поверхностного омоложения кожи (в том числе у темнокожих пациентов). Аппараты позволяют проводить быстрое и равномерное сканирование кожи, а также выравнивать цветовые границы после обработки CO 2 -лазером.

Противопоказания к применению лазерной терапии

Лазерную терапию применяют с осторожностью у больных с онкологическими заболеваниями, сахарным диабетом, гипертонической болезнью и тиреотоксикозом в стадии декомпенсации, тяжелыми нарушениями сердечного ритма, стенокардией напряжения 3-4-го функциональных классов и недостаточностью кровообращения 2-3-й стадии, заболеваниями крови, угрозой кровотечения, активной формой туберкулеза, психическими болезнями, а также при индивидуальной непереносимости.

Таким образом, лазерное излучение является мощным вспомогательным средством в лечении больных различными дерматологическими заболеваниями и методом выбора в хирургической дерматологии и косметологии.

Литература
  1. Богданов С. Л. и др. Лазерная терапия в косметологии: Метод. рекомендации. - СПб., 1995.
  2. Брилль Г. Е. и др. Физическая медицина. - 1994. - № 4, 2. - С. 14-15.
  3. Графчикова Л. В. и др. Физическая медицина. -1994. - № 4, 2. - С. 62.
  4. Егоров B. E. и др. Материалы Международной конференции Клиническое и экспериментальное применение новых лазерных технологий. Казань. - 1995. - C.181-182 .
  5. Каламкарян А. Л. и др. Вестн. дерматол. и венерол. - 1990. - № 8. - С. 4-11.
  6. Капкаев P. A., Ибрагимов А. Ф. Актуальные вопросы лазерной медицины и операционной эндоскопии: Материалы 3-й Международной конференции. - Видное, 1994. - С. 93-94.
  7. Корепанов В. И., Федоров С. М., Шульга В. А. Применение низкоинтенсивного лазерного излучения в дерматологии: Практическое руководство. - М., 1996.
  8. Кулага В. В., Шварева Т. И. Вестн. дерматол. и венерол. - 1991. - № 6. - С. 42-46.
  9. Мандель A. Н. Эффективность лазеротерапии больных очаговой склеродермией и ее влияние на показатели серотонина, дофамина, норадреналина и уроканиновой кислоты: Автореф. дис. ... канд. мед. наук. -М., 1982.
  10. Мандель A. Н. Эффективность лазерной фотохимиотерапии у больных хроническими дерматозами: Дис. ... докт. мед. наук. - М. 1989. - С. 364.
  11. Михайлова И. В., Ракчеев А. П. Вестн. дерматол. - 1994. - № 4. - С. 50.
  12. Петрищева Н. Н., Соколовский Е. В. Применение полупроводниковых лазеров в дерматологии и косметологии: Пособие для врачей. - СПб.: СПбГМУ, 2001.
  13. Плетнев С. Д. Лазеры в клинической медицине; Руководство для врачей. - М.: Медицина, 1996.
  14. Ракчеев А. П. Перспективы применения лазеров в дерматологии // Всесоюзная конференция по применению лазеров в медицине. - М., 1984.
  15. Рапопорт Ж. Ж. и др. Применение лазеров в хирургии и медицине. - Самарканд, 1988. - Ч. 1. - С. 91-93.
  16. Родионов В. Г. Влияние лазерного излучения на капилляротоксические факторы крови больных аллергическими васкулитами кожи // Всесоюзная конференция по применению лазеров в медицине. - М., 1984.
  17. Утц С. Р. и др. Вестн. дерматол. и венерол. - 1991. - № 11. - С. 11.
  18. Халмуратов A. M. Актуальные вопросы лазерной медицины и операционной эндоскопии // Материалы 3-й Международной конференции. - Видное, 1994. - С. 482-483.
  19. Шульга В. А., Федоров C. M. Информационный лист по проблеме "Дерматология и венерология". - М.: ЦНИКВИ, 1993.
  20. Bergbrant I. M., Samuelsson L., Olofsson S. et al. Acta Derm Venerol. 1994; 74(5): 393-395.
  21. Bonis B., Kemeny L., Dobozy A. et al. 308 nm eximer laser for psoriasis. Lancet. 1997; 3509:1522.
  22. Damianov N., Mincheva A., de Villiers E. M. Khirurgia. 1993; 46(4): 24-27.
  23. Handley J. M., Dinsmore W. J. Eur Acad Dermatol Venerol. 1994; 3(3): 251-265.
  24. Gerber W., Arheilger B., Ha T.A. et al. Ultraviolet B 308-nm eximer laser treatment of psoriasis: a new phototherapeutic approach. British J of Dermatol. 2003; 149: 1250 -1258.
  25. Gloster H. M., Roenigk R. K. J Amer Acad Dermatol. 1995; 32(3): 436 - 441.
  26. Lassus J., Happonen H. P., Niemi K. M. et al. Sex Transm Dis. 1994; 21(6): 297-302.
  27. Novak Z., Bonis B., Baltas E. et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in including T cell apoptosis than a narrow-band ultraviolet B. J Photochem and Photobiol. 2002; 67: 32-38.
  28. Petersen C. S., Menne T. Acta Derm Venerol. 1993; 73(6): 465-466 .
  29. Schneede P., Muschter R. Urologe. 1999; 33(4): 299-302.
  30. Schoenfeld A., Ziv E., Levavi. H. et al. Gynecol & Obstet Invest. 1995; 40(1): 46-51 .
  31. Smyczek-Garsya B., Menton M., Oettling G. et al. Zentralbl Gynakol. 1993; 115(9): 400-403.
  32. Townsend D. E., Smith L. H., Kinney W. K. J Reprod Med. 1993; 38(5): 362-364.
  33. Vasileva P., Ignatov V., Kiriazov E. Akush Ginekol. 1994; 33(2): 23-24.
  34. Wozniak J., Szczepanska M., Opala T. et al. Gin Pol. 1995; 66(2): 103-107.

А. М. Соловьев, кандидат медицинских наук, доцент
К. Б. Ольховская, кандидат медицинских наук

Дурнов Л.А.*, Грабовщинер А.Я.**, Гусев Л.И.*, Балакирев С.А.*
* Российский онкологический научный центр им. Н.Н. Блохина, РАМН;
**Ассоциация «Квантовая медицина», г. Москва

Нередко в литературе, посвященной низкоинтенсивной лазерной терапии различных заболеваний, в списке противопоказаний на первом месте стоит онкология. Такой подход к онкологическим заболеваниям обусловлен тем, что до сих пор остается неясным действие низкоинтенсивного лазерного излучения (НИЛИ) на злокачественные новообразования. Изучением данного фактора исследователи занимаются с конца 70-х гг.

Проведенные различными учёными исследования показали нижеследующие отрицательные результаты такого воздействия.

  • Стимуляция роста клеток асцитной карциномы Эрлиха в опытах in vitro наблюдалась при воздействии He-Ne лазера (Москалик К. et al. 1980).
  • Стимулирующее действие на опухоль различных видов НИЛИ обнаружено у животных-опухоленосителей (Москалик К. с соавт.. 1981).
  • Стимуляция роста меланомы Гардинг-Насси, аденокарциномы 765 и саркомы 37 отмечена при воздействии He-Ne (633 нм) и импульсного азотного лазеров (340 нм) (Ильин А 1980, 1981, 1983; Плетнев С. 1980, 1985, 1987).
  • Стимуляция роста доброкачественных опухолей молочных желез у экспериментальных крыс получена при воздействии He-Ne лазера (Панина Н. с соавт., 1992).
  • Стимуляция роста и увеличение частоты метастазирования таких опухолей, как: лимфосаркома Плисса, меланома В-16, асцитная карцинома Эрлиха, аденокарцинома легких Льюиса, наблюдались при воздействии на них He-Ne лазером (Зырянов Б. 1998).
  • Стимуляция роста в одних случаях и торможение в других отмечены при проведении экспериментов по воздействию НИЛИ (480 нм и 640 нм) на культивированные клетки злокачественных опухолей человека (меланома, опухоли молочной железы и толстой кишки) (Dasdia Т. et al. 1988).

Аналогичные результаты получены при воздействии НИЛИ на колонии различных злокачественных клеток аргоновым лазером или лазером на красителях с накачкой генерации аргоновым лазером с плотностью мощности 8,5-5,0 мвт/см KB.(Fu-Shоu Yang et.al., 1986).

С другой стороны, проведенные исследования доказали и положительные результаты такого воздействия.

  • Торможение перевиваемых опухолей при облучении кадмий-гелиевым лазером (440 нм) при СД 30 Дж (Ильина АИ., 1982).
  • Ингибирующее действие гелий-неонового лазера на живые клетки карциномы Льюиса выше при более раннем начале и большей продолжительности курса облучения (Иванов АВ., 1984; Захаров с.д.,1990).
  • При воздействии полупроводниковым лазером (890 нм) на перевиваемую саркому Уокера у крыс и рак молочной железы у мышей отмечено замедление роста опухоли на 37,5% при СД 0,46 Дж/см2, тогда как при СД 1,5 Дж/см2 эффект не обнаружен (Михайлов В.А, 1991).
  • При нерадикально удаленной саркоме мягких тканей у оперированных животных с последующим облучением гелий-неоновым лазером отмечено ингибирование опухолевого процесса. Зафиксировано удлинение срока жизни животных в два раза по сравнению с контрольной группой (Димант И.Н., 1993).
  • Выраженные изменения в структуре первичной опухоли, вплоть до гибели клеточных элементов опухоли, зафиксированы при лазерном облучении крови. Метастазы у этих животных были значительно меньше сравнительно с контрольной группой (Гамалея Н.Ф.,1988).

Результаты экспериментальных исследований мы привели для того, чтобы стало ясно, почему нельзя воздействовать НИЛИ на новообразования в клинике, поскольку результаты непредсказуемы.

В результате исследований ученых описаны биологические эффекты лазерного излучения низкой интенсивности (НИЛИ), которые имеют большое значение в практической медицине, так как в отличие от лазерного излучения высокой мощности, НИЛИ не повреждает ткани организма. Напротив, низкоинтенсивное лазерное излучение оказывает противовоспалительное, иммунокоррегирующее, обезболивающее действие, способствует заживлению ран, восстановлению равновесия между компонентами нервной системы. Источником многообразия этих эффектов являются механизмы ответа организма на лазерное излучение.

Лазерное излучение воспринимают фотоакцепторы, или, проще говоря, особые чувствительные молекулы, участвующие в поддержании равновесия внутри клетки, каждой клетки человека. После взаимодействия лазерного излучения и чувствительной молекулы в клетке активизируется обмен веществ и энергии, что дает ей возможность полноценно выполнять свои функции, а на определенном этапе развития - делиться, образуя здоровое потомство.

Способ воздействия низкоинтенсивным лазерным излучением на организм зависит от вида и локализации патологического процесса. Различают следующие методы лазерной терапии: 1) лазерное облучение крови 2) наружное (чрескожное) воздействие, 3) лазерная рефлексотерапия (воздействие НИЛИ на точки акупунктуры, 4) внутриполостное воздействие.

Лазерное облучение крови.

Эта методика была разработана в 80-х годах в Новосибирском НИИ патологии кровообращения под руководством академика Е.Н. Мешалкина и первоначально применялась как внутрисосудистое лазерное облучение крови (ВЛОК) (Мешалкин Е.Н. с соавт. 1981, Корочкин И.М. с соавт. 1984). Механизм лечебного действия лазерного облучения крови является общим при различной патологии (Гафарова Г.А. с соавт. 1979). Выраженный эффект лазерного облучения крови связан с влиянием НИЛИ на обмен веществ. При этом возрастает окисление энергетических материалов - глюкозы, пирувата, лактата, что ведет к улучшению микроциркуляции и утилизации кислорода в тканях. Изменения в системе микроциркуляции связаны с вазодилятацией и изменением реологических свойств крови за счет снижения ее вязкости и уменьшения агрегатной активности эритроцитов. Отмечено, что при превышении нормы уровня фибриногена на 25-30%, после лазерного воздействия отмечается его снижение на 38-51 %, а при его низких показателях до лечения, отмечается его повышение на 100% (Корочкин И.М. с соавт. 1984, Москвин С.В. с соавт. 2000).

Лазерное облучение крови оказывает стимулирующее влияние на кроветворение в виде увеличения количества гемоглобина, эритроцитов и лейкоцитов (Гамалея Н.Ф. 1981, Гамалея Н.Ф. с соавт. 1988). Происходит стимуляция системы неспецифической защиты - повышается функциональная и фагоцитарная активность лимфоцитов. Интересно, что при облучении лимфоцитов крови онкологических больных стимуляция Т-клеток выражена больше, чем при облучении их у здоровых людей (Гамалея Н.Ф. с соавт. 1986, Пагава К.И. 1991).

При воздействии НИЛИ на кровь происходит стимуляция Т-системы иммунитета. Возрастает хелперная и снижается супрессорная активность Т-лимфоцитов, нормализуется содержание В-лимфоцитов, снижается уровень ЦИК, ликвидируется дисбаланс иммуноглобулинов (Мешалкин Е.Н. 1983, Зырянов Б.Н. с соавт. 1998). Иммунокорригирующий эффект лазерного облучения крови объясняется увеличением выработки клетками крови эндогенного иммуномедиатора интерлейкина-1 (ИЛ-1) (Жибурт Е.Б. с соавт. 1998). Исследования, проведенные в РОНЦ РАМН, подтверждают эти данные. Воздействию НИЛИ подвергались мононуклеарные клетки (МНК) в течение 20 и 40 мин. В результате, при исследовании цитотоксичности МНК было установлено, что воздействие лазерным излучением в течение 20 мин. не приводит к достоверному повышению киллерных свойств МНК доноров. Усиление способности МНК доноров лизировать опухолевые клетки линии К-562 отмечалось при увеличении экспозиции излучения до 40 мин. В этих условиях цитолитический потенциал МНК возрастал в среднем с 31±8% до 57±5% (p

Воздействие лазерного облучения повышает способность МНК высвобождать ИЛ-1 и ФНО. В частности, при экспозиции 20мин. отмечается тенденция к увеличению концентрации исследуемых цитокинов в супернатанте МНК по сравнению с исходным уровнем, а увеличение времени воздействия приводит к более выраженной способности МНК доноров высвобождать ИЛ-1 и ФНО.

Таким образом, НИЛИ приводит к активации МНК крови доноров, Т.е. повышает их цитотоксическую активность и индуцирует способности МНК высвобождать цитокины (ИЛ-1 и ФНО), играющие важную роль в развитии иммунного ответа организма (Дурнов Л.А. с соавт. 1999).

Таблица 1
Влияние лазерного излучения на цитотоксическую активность (%) мононуклеарных клеток и индукцию высвобождения цитокинов (пг/мл)

Настоящее исследование проведено при помощи аппарата МИЛТА в режиме: частота 5000 Гц, длительность экспозиции сеанса 5 мин. Исследование будет продолжено, Т.к. представляется интересным исследовать режимы 50 и 1000 Гц и временной интервал воздействия в 2 мин.

С развитием лазерной техники на смену внутрисосудистому лазерному облучению крови пришло надсосудистое (чрескожное) воздействие на кровь. При внутрисосудистом облучении крови обычно применялись маломощные гелий-неоновые (He-Ne) лазеры, требующие сменных одноразовых кварц-полимерных световодов. Это связано с тем, что определенную техническую трудность представляло воздействие на относительно глубоко расположенные структуры (в частности - сосуды), так как глубина проникновения лазерного излучения невелика. Она зависит от длины волны (от 20 мкм в фиолетовой части спектра до 70 мм в ближней инфракрасной), и необходимость "достать" глубже лежащие ткани требует увеличения мощности воздействия. Эта задача успешно решается в лазерных аппаратах, работающих в импульсном режиме. Наиболее зарекомендовавшими себя в этом отношении, являются арсенид-галиевые (Ga-As) лазеры, работающие в высокочастотном импульсном режиме.

Продолжительность вспышки импульсного лазера - миллисекунды, что позволяет воздействовать на ткань с необходимой для облучения глубоких структур мощностью без риска повреждения поверхностных структур.

Современные лазерные аппараты снабжены специальными магнитными насадками с оптимальной формой постоянного магнитного поля (ПМП). Помимо лечебного эффекта магнитотерапии, ПМП придает определенную ориентацию молекулярным диполям, выстраивая их вдоль своих силовых линий, направленных в глубь облучаемых тканей. Это ведет к тому, что основная масса диполей располагается вдоль светового потока способствуя увеличению глубины его проникновения (Илларионов В.Е., 1989). Мостовников В.А. с соавторами (1981) объясняют эффект высокой биологической активности двух физических факторов тем, что их действие на мембраны и компоненты клеток, участвующих в регуляции метаболических процессов, ведет к перестройке пространственной структуры мембраны и, как следствие, ее регуляторных функций.
Терапевтический эффект ЧЛОК объясняется следующими факторами:

  • Улучшение микроциркуляции: тормозится агрегация тромбоцитов, повышается их гибкость, снижается концентрация фибриногена в плазме и усиливается фибринолитическая активность, уменьшается вязкость крови, улучшаются реологические свойства крови, увеличивается снабжение тканей кислородом.
  • Уменьшение или исчезновение ишемии в тканях органов. Увеличивается сердечный выброс, уменьшается общее периферическое сопротивление, расширяются коронарные сосуды.
  • Нормализация энергетического метаболизма клеток, подвергшихся гипоксии или ишемии, сохранение клеточного гемостаза.
  • Противовоспалительное действие за счет торможения высвобождения гистамина и других медиаторов воспаления из тучных клеток, нормализация проницаемости капилляров, уменьшение отечного и болевого синдромов.
  • Коррекция иммунитета: повышение общего уровня Т-лимфоцитов, лимфоцитов с супрессорной активностью, увеличение содержания Т-хелперов при отсутствии снижения уровня лейкоцитов в периферической крови.
  • Влияние на процессы перекисного окисления липидов в сыворотке крови: уменьшение содержания в крови малонового диальдегида, диеновых конъюгант, шифровых оснований и увеличение токоферола.
  • Нормализация липидного обмена: повышение липопротеинлипазы, снижение уровня атерогенных липопротеинов.

Экспериментальные и клинические исследования доказали, что эффективность чрескожного лазерного облучения крови (ЧЛОК) и ВЛОК - примерно одинакова (Кошелев В.Н. с соавт. 1995). Однако простота методики ЧЛОК, неинвазивность, доступность проведения в любых условиях, высокая терапевтическая эффективность - все эти факторы позволили широко внедрить ЧЛОК в лечебную практику.

Чрескожное лазерное облучение крови используют в качестве анальгезирующего, антиоксидантного, десенсибилизирующего, биостимулирующего, иммуностимулирующего, иммунокорригирующего, детоксицирующего, сосудорасширяющего, антиаритмического, антибактериального, антигипоксического, противоотечного и противовоспалительного средства (Москвин С.В. с соавт. 2000).

Одними из первых исследователей, проводивших изучение эффективности лазерного облучения крови у онкологических больных, были ученые Томского НИИ онкологии. При отработке режима лазерного воздействия применялась экспозиция в 30 мин. и 60 мин. однократно в течение 5 суток. Существенных различий в этих группах не выявлено. Не зафиксировано никаких осложнений и побочных проявлений. Отмечено ускорение заживления послеоперационных ран, а анализ отдаленных результатов показал, что частота и сроки возникновения рецидивов в группе больных, которым проводилось лазерное облучение крови, достоверно ниже сравнительно с контрольной группой.

В НИИ детской онкологии и гематологии РОНЦ РАМН проводилось изучение эффективности ЧЛОК путем исследования динамики клеточного иммунитета у детей, получавших химиотерапию по поводу различных злокачественных новообразований. Воздействие НИЛИ осуществлялось на крупные сосуды в кубитальных и подколенных областях. Частота НИЛИ 50 Гц, временной интервал для детей старшего возраста составлял 15...20 мин. (облучение крови осуществлялось двумя терминалами одновременно). Всего проводилось от 2 до 4 сеансов. У больных, получивших свыше 2-х сеансов, отмечено повышение числа зрелых Т-лимфоцитов, Т -супрессоров и лимфоцитов. Отмечена явная тенденция к положительной динамике. Осложнений и побочных проявлений не было отмечено ни у одного больного. Для детей младшего возраста расчет дозы НИЛИ проводится индивидуально.

Частота 50 Гц при лазерном облучении крови выбрана не случайно. Исследователи Земцев И.З. и Лапшин в.п. (1996), изучая механизмы очищения поверхности биомембран от токсических веществ, выявили, что деполяризация активности мембран (в результате лазерного облучения крови), сопровождающаяся их «промывкой», происходит при частоте импульсов НИЛИ ниже 100 Гц.

Наружное (местное) воздействие.

При локализации патологического очага на коже или видимых слизистых оболочках воздействие НИЛИ осуществляется непосредственно на него. В НИИ детской онкологии и гематологии широко применяется низкоинтенсивная лазерная терапия в лечении стоматитов, воспалительных явлений носоглотки, флебитов, длительно незаживающих послеоперационных ран, пролежнях. Пролечено более 280 больных. Повреждение слизистой оболочки полости рта и желудочно--кишечного тракта - серьезная проблема для детей, получающих химиотерапевтическое лечение. Слизистая оболочка полости рта при стоматите болезненна, на ней образуются дефекты разных размеров и глубины, что ограничивает или делает совсем невозможным прием пищи. В тяжелых случаях это ведет к длительному перерыву в противоопухолевой терапии. В лечении стоматитов применялись и применяются полоскания из отваров трав, растворов лекарственных препаратов, однако эти средства требуют длительных затрат времени. Как правило, эффект от такого вида лечения отмечается на 7-10 сутки. При лечении НИЛИ эффект достигается на 3-5 сутки.

При лечении постлучевых реакций кожи во всех случаях достигнут положительный эффект. Сравнение сроков полного исчезновения местных проявлений у детей, которым проводилась полифакторная квантовая (магнито-инфракрасно-лазерная) терапия, с историческим контролем показало, что привоздействии НИЛИ сроки выздоровления сократились на 28%.

Основными противопоказаниями для проведения чрескожного лазерного облучения крови являются заболевания крови с синдромом кровоточивости, тромбоцитопения ниже 60000, острые лихорадочные состояния, коматозные состояния, активный туберкулез, гипотония, декомпенсированные состояния сердечно-сосудистой, выделительной, дыхательной и эндокринной систем.

При местном лечении таких осложнений химио-лучевой терапии как: стоматиты, гингивиты, радиоэпителииты, а также пролежни, вяло текущие раневые процессы, - вышеперечисленные заболевания и состояния не являются абсолютным противопоказанием.

Абсолютным противопоказанием для местного применения НИЛИ являются зоны локализации злокачественного процесса.

Лазерная терапия с каждым годом все шире используется в современной медицине. Это обусловлено, с одной стороны, созданием высокоэффективных лазерных установок, с другой - полученными данными, свидетельствующими о высокой терапевтической эффективности низкоинтенсивного лазерного излучения (НИЛИ) при различных патологических состояниях организма. Наряду с этим НИЛИ характеризуется отсутствием значительных побочных эффектов, возможностью сочетанного применения с другими лечебными средствами, положительным влиянием на фармакодинамику и фармакокинетику лекарственных препаратов .

Лазерное излучение - это электромагнитное излучение оптического диапазона, обладающее свойствами когерентности, монохроматичности, поляризованности и направленности . Использование низких энергий лазерного излучения с физиотерапевтической целью показало хорошую переносимость больными, отсутствие патологических сдвигов со стороны кроветворной, сердечно-сосудистой и адаптационно-приспособительной систем. Излучение гелий-неонового лазера (ГНЛ) невысокой мощности - до 20 мВт, с длиной волны 630 нм способно воздействовать на пусковые механизмы клеточной регуляции, изменение состояния клеточной мембраны с повышением функциональной активности клеток. Лазер влияет на электрические характеристики кожи, повышает ее температуру на 1-3 °С, приводит к биофизическим, биохимическим, гистологическим и ультраструктурным изменениям .

Методы лазерной терапии отличаются большим разнообразием. Применяются чрескожная, пунктурная лазеротерапия, лазерная гемотерапия, сочетанные методы воздействия НИЛИ с другими лечебными средствами.

До настоящего времени нет единого мнения о механизмах действия НИЛИ на организм, его отдельные системы и патологический очаг. Представляется, что многообразие и системный характер вторичных биохимических и физиологических эффектов лазерного облучения крови объясняется многообразием фотоакцепторов и запускаемых первичных фотобиологических реакций на молекулярном, субклеточном и клеточном уровнях. В процессе взаимодействия лазерного излучения с биологическим субстратом возникают фотобиологические реакции, которые протекают стадийно: поглощение кванта света и внутримолекулярное перераспределение энергии (фотофизические процессы), межмолекулярный перенос энергии и первичные фотохимические реакции, биохимические процессы с участием фотопродуктов, вторичные фотобиологические реакции и общефизиологический ответ организма на действие света .

Существует несколько гипотез о механизме терапевтического действия НИЛИ. Система клеточного взаимодействия, а также тканевого и органного функционирования основана на ковалентной трансформации мембранных белков. Например, мембраносвязанная аденилатциклаза, превращающая АТФ в циклический аденозинмонофосфат (цАМФ), содержит домены, формирующие каталитическое ядро . Любой фактор, изменяющий пространственную структуру этих доменов, в том числе НИЛИ, может изменить каталитическую активность фермента и увеличить количество цАМФ . Последний в свою очередь приводит к снижению внутриклеточной концентрации мессенджера многих метаболических процессов - ионов кальция. При ишемии головного мозга высокая концентрациях Са 2+ в нейронах является триггером нарушения ионного транспорта и активации цитоплазматических ферментов (протеинкиназ, липаз, эндонуклеаз), кальций-опосредованной эксайтотоксичности и глутамат-кальциевого каскада, а также способствует агрегации тромбоцитов, активации реакций перекисного окисления липидов (ПОЛ) и свободнорадикального окисления . Эти сведения согласуются с одной из гипотез, которая заключается в том, что механизм биологического действия НИЛИ реализуется через конформационную перестройку белков биомембран, ведущую к изменению их функциональной активности, в том числе цАМФ . Известно, что in vitro и in vivo НИЛИ вызывает активацию таких ферментов, как Са 2+ - и Mg 2+ -АТФаза, никотинамидадениндинуклеотид (НАД)- и никотинамидадениндинуклеотидфосфат (НАДФ)-дегидрогеназа, лактат- и малатдегидрогеназа, трансаминаз, повышает содержание адениннуклеотидов в головном мозге, которые обеспечивают непрерывность реокисления НАДН и играют важную роль в аэробном и анаэробном энергообразовании . Имеются данные о том, что НИЛИ изменяет скорость метаболических процессов в тканях, причем эффект проявляется через 5 мин после его воздействия.

В ряде экспериментальных исследований показано, что взаимодействие НИЛИ с компонентами дыхательной цепи приводит к их реактивации и стимуляции синтеза макроэргов, так как хромофорами лазерного света в организме человека являются цитохромы α- α 3 и цитохромоксидаза . При исследовании адаптации к гипоксии у крыс доказано, что повышение активности ферментов и содержания адениннуклеотидного пула в тканях мозга является биохимическим адаптационным механизмом, позволяющим снизить энергетический дефицит в клетках . Следовательно, модулируя активность важнейших ферментативных систем, НИЛИ оказывает компенсаторное и саногенетическое воздействие при гипоксии головного мозга.

В ряде работ развивается концепция, согласно которой механизм действия НИЛИ основан на фотосенсибилизации эндогенных фотоакцепторов - порфиринов, входящих в состав гемопротеидов (гемоглобина, миоглобина, церулоплазмина, цитохромов) и металлосодержащих ферментов - супероксиддисмутазы (СОД), пероксидазы, каталазы . В условиях гипоксии в органах и тканях резко возрастает количество эндогенных порфиринов, поглощающих излучение в видимой области спектра. Они являются высокоактивными веществами, влияющими на все метаболические процессы, внутриклеточные сигнальные механизмы, активность синтеза оксида азота (NOS) и гуанилатциклазы . Причем гуанилатциклаза содержит в своей структуре порфириновый комплекс, что делает ее фотоакцептором и обусловливает повышение концентрации циклического гуанозинмонофосфата (цГМФ) при фотостимуляции, вызывая активацию цГМФ-зависимой протеинкиназы, которая связывает Са 2+ в цитоплазме тромбоцитов и ингибирует их агрегацию, а также вызывает вазодилатирующий эффект . Нейропротективное действие в диапазоне длин волн красного и инфракрасного НИЛИ основывается, кроме того, на его способности угнетать ПОЛ клеточных мембран, активизировать ферменты антиоксидантной системы - СОД и каталазу .

В этом же ряду стоят исследования по идентификации первичных фотоакцепторов лазерного излучения и механизмов первичных фотореакций, развивающихся in vivo под действием внутривенного лазерного облучения крови (ВЛОК) ГНЛ на основании изучения спектров поглощения в ультрафиолетовой и инфракрасной областях. Было показано, что излучение ГНЛ поглощается гемоглобином крови, который является первичным фотоакцептором лазерного излучения с длиной волны 632,8 нм. НИЛИ одновременно влияет на структуру гема и полипептидных цепочек гемоглобина, что ведет к конформационным перестройкам молекулы гемоглобина и изменению кислородтранспортной функции крови .

Роль монооксида азота (NO), синтезируемого eNOS, довольно значима в реализации терапевтического действия НИЛИ, учитывая факт снижения его синтеза при постишемической реперфузии не только в области ишемии, но и дистантно . Синтез NO в организме осуществляется несколькими изоформами NOS, в состав которых входит протопорфирин IX . Этот фермент является фотоакцептором лазерного излучения, а eNOS может рассматриваться как мишень НИЛИ при облучении крови . Стимуляция синтеза NO ведет к снижению реперфузионного повреждения эндотелия радикалами кислорода, которые образуются при ишемии-реперфузии, так как NO нейтрализует их, выступая в роли антиоксиданта . Нарушение сбалансированной продукции вазоконстрикторов и NO при ишемии-реперфузии приводит к нарушению возобновления кровотока на уровне микроциркуляторного русла после ишемии (феномен no-reflow), что усугубляет гипоксию тканей. В последние годы появились данные об NO-зависимом эндотелий-протективном эффекте при ишемической адаптации, связанном с предупреждением развития постишемической дисфункции эндотелия . Этот эффект сопровождается уменьшением адгезии лейкоцитов и тромбоцитов к эндотелию ишемизированной ткани, сохранением способности сосудов к дилатации, что предупреждает развитие «no-reflow». Интересны сведения о влиянии гемоглобина на концентрацию NO в плазме, в связи с тем, что нитрозольные комплексы гемоглобина служат депо NO . Сосудистое русло является своеобразным «сливом» для избытка NO, продуцируемого мозговой тканью . Оксид азота взаимодействует и с другими гемопротеидами, а ВЛОК способствует высвобождению NO из этих соединений. Можно предположить также, что NO является посредником между лазерным излучением и ферментативными клеточными системами организма за счет стимуляции NO-зависимой цГМФ и каскада ферментативных реакций клеточного восстановления при ВЛОК.

По мнению ряда исследователей, кислород, благодаря наличию у него полосы поглощения в области 630 нм, активно поглощает красный свет и переходит в синглетное (возбужденное) состояние, индуцирующее в тканях окислительные процессы. Согласно представлениям некоторых авторов, молекулы кислорода, находящегося в межлипидном пространстве мембран клеток, являются основным акцептором лазерного излучения. Возникающие при этом гидроперекиси липидов в присутствии восстановленных форм железа инициируют цепную реакцию окисления полиненасыщенных жирных кислот клеточных мембран и плазмы крови. Синглетный кислород, образующийся в результате фотохимических реакций, обладает разнообразными свойствами, в частности, он может повреждать цитоплазматические мембраны, что сопровождается соответствующими физиологическими реакциями на уровне целостного организма .

Существует мнение, что при отсутствии специальных рецепторов имеется неспецифическое полевое воздействие НИЛИ, акцепторами которого являются важнейшие биополимеры: белки, ферменты, липиды. При этом терапевтический эффект лазерного воздействия объясняют обратимой модификацией структуры компонентов клетки, конформационным изменением мембраны и ее регуляторной функции .

Если все существующие концепции первичного механизма действия НИЛИ на биологические объекты основаны на предположении о фотохимической природе этого явления, то в настоящее время развивается и другое предположение, в основе которого лежит представление о действии на клетки и органеллы градиентных сил, возникающих при наличии пространственных градиентов интенсивности излучения . Причем, по мнению авторов, явление возникает лишь при освещении объектов когерентным светом, когда появляются определенные спекл-структуры, образующиеся на поверхности и в глубине объекта. В свою очередь градиентные силы могут вызывать различные селективные изменения локальной концентрации и состава среды, повышать парциальную температуру микрочастиц, приводить к конформационным изменениям мембран и ферментов.

Развивается также концепция, согласно которой фотофизическим процессом, определяющим перестройку пространственного строения различных ферментов и мембранных структур под действием НИЛИ, является нерезонансное взаимодействие, а не поглощение его квантов .

Возможно также, что действие красного света реализуется через изменения свойств свободной и связанной воды в клетке. Сделана попытка объяснить физиологическую активность красного лазерного излучения спектрально-неспецифичным полевым действием на жидкие среды организма .

В последние годы рассматривается гипотеза о фотодинамическом механизме действия НИЛИ, согласно которой хромофорами лазерного излучения в красной области спектра являются эндогенные порфирины, известные как фотосенсибилизаторы, содержание которых возрастает при многих патологических процессах. Увеличение внутрилейкоцитарного содержания кальция, происходящее под влиянием поглощения порфиринами НИЛИ, запускает Са 2+ -зависимые реакции, приводящие к предстимуляции, так называемому праймингу, что в свою очередь вызывает возрастание продукции различных биологически активных соединений, в том числе оксида азота. Последний, как известно, улучшает микроциркуляцию, что активно используется в клинической медицине с хорошим эффектом .

Фотонейродинамическая концепция объясняет универсальный нозологически неспецифический лечебный эффект воздействия ГНЛ процессами гомеостатического моторно-вегетативного регулирования .

Формирование местного биостимулирующего эффекта происходит в результате структурно-функциональной перестройки биомембран и повышенной активности основных метаболических систем клетки, связанных с образованием макроэргов . Наблюдаемая в условиях лазерного излучения стабилизация клеточных мембран обусловлена метаболическими сдвигами, которые ведут к изменению вязкости и жесткости мембран, поверхностного заряда и мембранного потенциала .

Одним из методов лазерной терапии является лазерная гемотерапия, включающая ВЛОК и чрескожное лазерное облучение крови (ЧЛОК). Н.Ф. Гамалея считал, что при световом облучении крови имеются особые пути реализации этого воздействия. Учитывая, что кровь - система полифункциональная, выполняющая в организме в числе прочих функцию интегрирующей среды, ее облучение обеспечивает ответ организма в целом. Следовательно, лазерное воздействие на кровь лучше других способов облучения воплощает на практике представления, согласно которым НИЛИ является не средством лечения определенных заболеваний, а инструментом общей стимуляции организма, применяемым при многих патологических состояниях .

Всю совокупность изменений в крови, наблюдаемых при ВЛОК, рассматривают как отклик системы регулирования гомеостаза на развитие патологических процессов в отдельных органах и тканях, где лазерное излучение выступает в качестве триггера, запускающего этот механизм через систему неспецифического регулирования . Ранее С.В. Москвиным была предложена и обоснована модель термодинамического взаимодействия НИЛИ с внутриклеточными компонентами с последующим интрацеллюлярным высвобождением ионов кальция и развитием кальций-опосредованных процессов.

Эритроциты как порфиринсодержащие клетки являются акцепторами (хромофорами) лазерного излучения в красной области спектра . Это во многом объясняет позитивное действие НИЛИ на реологические свойства крови: снижение эритроцитарной агрегации и увеличение способности эритроцитов к деформируемости вследствие изменения их физико-химических свойств (повышение отрицательного электрического заряда на мембране, модификация ее структуры и микрореологии эритроцитарной цитоплазмы) . Лазерное облучение вызывает структурную перестройку мембран форменных элементов крови и оказывает мембраностабилизирующее действие, ведущее к изменению пластических характеристик клеток крови, снижению агрегации тромбоцитов и их чувствительности к тромбоксану А 2 , ингибированию ключевых ферментов арахидоновой кислоты - циклооксигеназы и тромбоксансинтетазы . Уменьшение агрегационного потенциала крови коррелирует с улучшением ее реологических свойств под действием лазерной гемотерапии . Это интенсифицирует кровообращение на уровне микроциркуляторного русла, увеличивает зоны доставки кислорода и активизирует аэробные метаболические процессы, реализуя антигипоксический эффект НИЛИ . Активация микроциркуляции при ЛОК обусловлена также нормализацией коллоидно-осмотического давления в микрососудах и снижением вязкости крови, вазодилатацией и стимуляцией неоваскулогенеза . В результате происходит включение резервных капилляров и коллатералей в кровоток, достигается оптимизация органной перфузии и увеличение количества доступного О 2 . В процессе лазерной гемотерапии улучшается мозговая гемодинамика, что характеризуется увеличением кровенаполнения сосудов головного мозга и линейной скорости кровотока, стимуляцией венозного оттока . Кроме того, в основе саногенетических изменений микроциркуляции при ишемии лежит нормализирующее действие лазерного облучения на активность вегетативной нервной системы с оптимизацией вегетативного обеспечения функционирования органов и тканей, в том числе влияния на тонус сосудистой стенки и нормализации нервной возбудимости .

Установлено отсутствие повреждающего действия ВЛОК на эндотелий сосудов . Сравнительный анализ эффективности ВЛОК и внутривенного применения реологически активных препаратов показал преимущества лазерного облучения . Между тем влияние НИЛИ на резистентность эритроцитов неоднозначно. Экспериментально установлено минимальное повреждающее действие лазерного излучения на эритроциты. Если лазерное воздействие не превышает определенных критических доз, эритроциты восстанавливают индуцируемые светом повреждения для перехода в новое устойчивое состояние .

Свертывание крови представляет собой каскад ферментативных реакций, которые реализуются по внутреннему и(или) внешнему пути через активацию сериновых протеаз (плазменных факторов свертывания) . Одним из факторов, способным оказать модифицирующее влияние на измененную гемокоагуляцию при церебральной ишемии, является ЛОК, которое реализует свое действие посредством изменения активности различных ферментативных систем. Квант света лазерного излучения при воздействии на клетки и биоструктуры крови за счет своего избирательного поглощения модулирует действие ферментов свертывающей системы крови . НИЛИ оказывает гипокоагуляционное и фибринолитическое действие, сочетающееся с эффектом ускорения кровотока в микрососудах, что создает оптимальные условия для нормализации нарушенной гемодинамики .

Экспериментальные и клинические исследования показывают, что под влиянием НИЛИ происходит восстановление эндотелия, реактивация ферментов, поврежденных при различных патологических состояниях, и активация биосинтетических процессов в ферментативных системах, усиление транскапиллярного кровообращения и улучшение энергетического метаболизма, интенсификация обмена веществ, нормализация проницаемости сосудисто-тканевых барьеров и гемостатической, фибринолитической активности крови.

Наряду с вышеперечисленными биологическими эффектами ВЛОК обладает адаптогенным влиянием на нейрогуморальную регуляцию, что выражается в модулирующем воздействии на функцию системы гипофиз-кора надпочечников , иммунокорригирующим и аналгезирующим действием .

Интерес представляют также данные об ультраструктурной перестройке нейронов в ЦНС под действием НИЛИ. Нами показано, что ВЛОК излучением инфракрасного лазера с выходной мощностью 2 мВт после моделирования церебральной ишемии не только предотвращает развитие деструктивных процессов, но и активизирует репаративные резервы клеток, стимулируя процессы регенерации, что является важным механизмом действия НИЛИ, запускающим процессы внутриклеточной и клеточной регенерации в ЦНС .

Все вышеперечисленные эффекты лазерного излучения ведут к обеспечению наиболее благоприятного режима функционирования метаболических процессов в ишемизированных тканях, что свидетельствует о целесообразности применения НИЛИ при церебральной ишемии.

Таким образом, НИЛИ оказывает выраженное многокомпонентное, патогенетически обоснованное влияние при целом ряде патологических состояний. Благодаря широте терапевтических эффектов и хорошей переносимости ВЛОК является уникальным средством направленного воздействия на организм. Этот метод лечения в комплексе с другими лечебными мероприятиями может применяться при заболеваниях, характеризующихся полиэтиологичностью, сложным многозвеньевым патогенезом, длительностью восстановления и рефрактерностью к проводимой терапии. Характер патогенеза острой и хронической ишемии головного мозга открывает возможность эффективного использования лазерной гемотерапии в острой стадии ишемического инсульта и при хронических цереброваскулярных заболеваниях в качестве средства патогенетической терапии, а также для стимуляции адаптационно-компенсаторных процессов в организме.

Литература

1. Акзамов А.И . Внутрисосудистое лазерное облучение крови в комплексном лечении перитонита: автореф. дис. ... канд. мед. наук. - М., 1991.

2. Байбеков И.М., Касымов А.Х., Козлов В.И. и др. Морфологические основы низкоинтенсивной лазеротерапии. - Ташкент: Изд-во им. Ибн Сины, 1991.

3. Барковский Е.В., Ачинович О.В., Бутвиловский А.В . и др. // Биофизика живых систем: от молекулы к организму / под ред. И.Д. Волотовского. - Минск: Белсэнс, 2002. - С. 73-86.

4. Беляев В.П., Федоров А.С., Малышев Б.Н . и др. Лазеры в клинической медицине: руководство для врачей / под ред. С.Д. Плетнева. - М.: Медицина, 1996.

5. Бриль Г.Е., Брилль А.Г . // Лазерная медицина. - 1997. - Т.1, № 2. - С. 39-42.

6. Брилль Г.Е., Прошина О.В., Жигалина В.Н. и др. // Низкоинтенсивные лазеры в эксперименте и клинике: сб. науч. работ. - Саратов, 1992. - С. 26-30.

7. Бычков П.К., Жуков Б.Н., Лысов И.А . и др. // Эфферентные методы в хирургии. - Ижевск, 1992. - С. 44-45.

8. Васильев А.П . // Вопросы курортологии, физиотерапии и лечебной физкультуры. - 1999. - № 1. - С. 5-7.

9. Викторов И.В. // Вестник Рос. АМН. - 2000. - № 4. - С. 5-10.

10. Витрещак Т.В., Михайлов В.В., Пирадов М.А. и др. // Бюлл. эксперим. биологии и медицины. - 2003. - № 5. - С. 508-511.

11. Владимиров Ю.А., Потапенко А.Я. Физико-химические основы фотобиологических процессов: учеб. пособие для мед. и биол. спец. вузов. - М.: Высшая школа, 1989.

12. Власов Т.Д. Системные изменения функционального состояния сосудов микроциркуляторного русла при ишемии и постишемической реперфузии: автореф. дис. ...д-ра мед. наук. - СПб., 2000.

13. Войтенок Н.К., Большов В.В., Хандра Зейн // Хирургия. - 1988. - № 4. - С. 88-91.

14. Волотовская А.В . Мембраноклеточные эффекты лазерного облучения крови (экспериментально-клиническое исследование): автореф. дис. ...канд. мед. наук. - Минск, 2001.

15. Вырыпаева О.В. Лазерная терапия в комплексном лечении нарушений мозгового кровообращения: автореф. дис. ...канд. мед. наук. - М., 1997.

16. Гамалея Н.Ф . // Действие низкоэнергетического лазерного излучения на кровь: тез. Всесоюз. конф. - Киев, 1989. - С. 180-182.

17. Гейниц А.В., Москвин С.В., Азизов Г.А . Внутривенное лазерное облучение крови. - М.; Тверь: Триада, 2006.

18. Гельфгат Е.Б., Самедов Р.И., Курбанова З.Н. и др. // Кардиология. - 1993. - Т. 33, № 2. - С. 22-23.

19. Гончарова Л.Л., Покровский Л.А., Ушакова И.Н . и др. // Междунар. мед. обзоры. - 1994. - Т. 2, № 1. - С. 15-19.

20. Девятков Н.Д., Зубкова С.М., Лапрун И.Б . и др. // Успехи соврем. биологии. - 1987. - Т. 103, № 1. - С. 31-43.

21. Ельцова Г.Н. Сравнительная эффективность накожной и внутривенной лазерной терапии у больных атеросклеротической дисциркуляторной энцефалопатией: автореф. дис. ...канд. мед. наук. - М., 2000.

22. Ефимов Е.Г., Чейда А.А., Каплан М.А. // Вопросы курортологии, физиотерапии и лечебной физкультуры. - 2003. - № 4. - С. 36-39.

23. Жибурт Е.Б., Серебряная Н.Б., Рождественская Е.Н. и др. // Пат. физиология и эксперим. терапия. - 1998. - № 3. - С. 6-7.

24. Залесская Г.А., Самбор Е.Г., Кучинский А.В . // ЖПС. - 2006. - Т. 73, № 1. - С. 106-112.

25. Захаров А.И . Внутривенное гелий-неоновое облучение крови инфракрасной частью спектра у детей с перитонитом: автореф. дис. ...канд. мед. наук. - Уфа, 1999.

26. Зиновьев Ю.В., Козлов С.А., Савельев О.Н . Резистентность к гипоксии - Красноярск: Изд-во Краснояр. ун-та, 1988.

27. Карагезян К.Г., Секоян Э.С., Бояджян В.Г . и др. // Докл. АН РФ. - 1996. - Т. 350, № 6. - С. 837-841.

28. Карагезян К.Г., Секоян Э.С., Карагян А.Т . и др. // Биохимия. - 1998. - Т. 63, № 10. - С. 1439-1446.

29. Кипшидзе Н.Н., Чапидзе Г.Э., Корочкин И.М . и др. Лечение ишемической болезни сердца гелий-неоновым лазером - Тбилиси: Амирани, 1993.

30. Клебанов Г.И. Молекулярно-клеточные основы функционирования биосистем: тез. докл. - Минск, 2000.

31. Климова Л.В . Внутривенное лазерное облучение крови в комплексной интенсивной терапии тяжелой черепно-мозговой травмы: автореф. дис. ...канд. мед. наук. - Ростов н/Д, 1998.

32. Кожекин В.В., Решедько О.А., Ткачев А.М. и др. // Анестезиология и реаниматология. - 1995. - № 1. - С. 42-43.

33. Козель А.И., Попов Г.К. // Вестник Рос. АМН. - 2000. - № 2. - С. 41-43.

34. Конторщикова К.Н., Перетягин С.П . // Бюлл. эксперим. биологии и медицины. - 1992. - № 10. - С. 357-359.

35. Костров В.А . Клинико-гемореологическая эффективность внутрисосудистого лазерного облучения крови в комплексном лечении гипертонической болезни: автореф. дис. … канд. мед. наук. - Н. Новгород, 1994.

36. Кочетков А.В . Лечебные физические факторы на этапе ранней реабилитации больных церебральным инсультом: автореф. дис. ...д-ра мед. наук. - М., 1998.

37. Крейман М.З., Удалый И.Ф. Низкоэнергетическая лазеротерапия. - Томск, 1992.

38. Кривозубов Е.Ф., Борзенков С.А., Бойчев О.Д . // Воен.-мед. журнал. - 2000. - № 3. - С. 68- 69.

39. Ларюшин А.И., Илларионов В.Е. Низкоинтенсивные лазеры в медико-биологической практике. - Казань: АБАК, 1997.

40. Ляндрес И.Г., Леонович С.И., Шкадаревич А.П . и др. Лазеры в клинической хирургии / под ред. И.Г. Ляндреса. - Минск, 1997.

41. Марочков А.В. Внутрисосудистое лазерное облучение крови, механизмы взаимодействия и клиническое применение. - Минск, 1996.

42. Масна З.З . Морфологические изменения в сосудистом русле коры большого мозга при ишемии и постишемическом лазерном облучении: автореф. дис. ...канд. мед. наук. - Львов, 1995.

43. Матринчик О.А., Михайлова А.Ю., Зиньковская Т.М . и др. // Lasers 2001: Вook of abstracts. - M., 2001.

44. Маховская Т.Г. Внутрисосудистая лазеротерапия при ишемических нарушениях мозгового кровообращения: автореф. дис. ...канд. мед. наук. - Пермь, 1993.

45. Мельникова Н.А. Влияние ультрафиолетового и лазерного излучений на структуру и функции мембран форменных элементов крови: автореф. дис. ... канд. биол. наук. - Саранск, 1994.

46. Монич В.А. // Биофизика. - 1994. - Т. 39, № 5. - С. 881-883.

47. Москвин С.В . Эффективность лазерной терапии. - М., 2003.

48. Москвин С.В . // М-лы IV Междунар. конгр. «Доказательная медицина - основа современного здравоохранения». - Хабаровск: Изд. центр ИПКСЗ, 2005. - С.181-182.

49. Мостовников В.А., Мостовникова Г.Р . и др. // Влияние лазерного излучения на кровь. - Киев, 1989. - С. 193-195.

50. Мостовников В.А., Мостовникова Г.Р., Плавский В.Ю. и др. // Лазерная физика и применение лазеров: тез. докл. междунар. конф. - Минск, 2003.

51. Мостовников В.А., Мостовникова Г.А., Плавский В.Ю . и др. // Низкоинтенсивные лазеры в медицине: м-лы Всесоюз. симпоз. - Обнинск, 1991. - Ч. 1. - С. 67-70.

52. Нечипуренко Н.И., Гаврилова А.Р., Танина Р.М . и др. // Третий съезд бел. об-ва фотобиологов и биофизиков. - Минск, 1998.

53. Нечипуренко Н.И., Жук О.Н., Маслова Г.Т . // Весцi НАН Беларусi (сер. мед. наук). - 2007. - № 1. - С. 46-50.

54. Никулин М.А., Карлов А.Г . // Лазеры и медицина: тез. докл. междунар. конф. - Ташкент, 1989. - С. 123-124.

55. Осипов А.Н., Борисенко Г.Г., Казаринов К.Д. и др. // Вестник Рос. АМН. - 2000. - № 4. - С. 48-52.

56. Перминова Л.Г . Клинико-физиологическая характеристика больных дисциркуляторной энцефалопатией в процессе внутривенной лазеротерапии: автореф. дис. ...канд. мед. наук. - Н. Новгород, 1994.

57. Плетнев С.Д. Лазеры в клинической медицине. - М.: Медицина, 1996.

58. Рассомахин А.А . Клинико-биохимические и клинико-иммунологические параллели при эндоваскулярной лазеротерапии у больных дисциркуляторной энцефалопатией: автореф. дис. ...канд. мед. наук. - Саратов, 1996.

59. Рубинов А.Н., Афанасьев А.А. // Лазерная физика и применение лазеров: тез. докл. междунар. конф. - Минск, 2003.

60. Рубинов А.Н., Афанасьев А.А . // Лазеры в биомедицине: тез. докл. междунар. конф. - Гродно, 2002.

61. Савченко А.А., Борисов А.Г., Глазман Н.Е . // Пат. физиология. - 1994. - № 2. - С. 38-41.

62. Самойлова К . И . // Lasers 2001: Вook of abstracts. - M., 2001.

63. Скупченко В.В. // Низкоинтенсивное лазерное излучение в медицинской практике. - Хабаровск, 1990. - С. 3-18.

64. Скупченко В.В., Милюдин Е.С . // Лазер. медицина. - 1999. - № 1. - С. 13-16.

65. Спасиченко П.В., Олейник Г.М., Яхненко Г.М . и др. // Нейрохирургия. - 1992. - Вып. 25. - С. 116-121.

66. Суховерова Н.А., Молашенко Н.П., Данильченко А.Г. и др. // Лазер и здоровье: м-лы 1-го Междунар. конгр. - Лимассол, 1997.

67. Тондий Л.Д . // Там же. - С. 124-126.

68. Трофимов В.А., Киселева Р.Е., Власов А.П . и др. // Бюлл. эксперим. биологии. - 1999. - № 1. - С. 43-45.

69. Удут В.В., Прокопьев В.Е., Карпов А.Б . и др. // Бюлл. Томск. науч. центра АМН СССР / под ред. Е.Д. Гольдберга. - Томск, 1990. - Вып. 2. - С. 65-78.

70. Улащик В.С., Лукомский И.В. Общая физиотерапия. - Минск, 2004.

71. Фаращук Н.Ф . Состояние процессов гидратации в жидких средах организма при воздействии внешних факторов и некоторых заболеваниях: автореф. дис. ... д-ра мед. наук. - М., 1994.

72. Хващевская Г.М. Внутривенная лазеротерапия прогрессирующей стенокардии напряжения в сочетании с гипертонической болезнью: автореф. дис. ...канд. мед. наук. - Минск, 1997.

73. Чичук Т.В., Страшкевич И.А., Клебанов Г.И. // Вестник Рос. АМН. - 1999. - № 2. - С. 27-31.

74. Шиффман Ф.Д. Патофизиология крови; пер. с англ. / под ред. Е.Б. Жибурта, Ю.Н.Токарева. - М.: Binom; СПб.: Невский диалект, 2000.

75. Babii L.N., Sirenko I.N., Sychev O.S. et al. // Lik. Sprava. - 1994. - N 1. - P. 3-7.

76. Beckman J.S., Ye Y.Z., Chen J. et al. // Adv. Neurol. - 1996. - N 71. - P. 339-354.

77. Bolognani L., Costato M., Milani M . // SPIE Proceedings. - Washington, 1994. - P. 319-327.

78. Brill A.G., Kirichuk V.F., Brill G.E. // Laser Therapy. - 1996. - Vol. 8, N 1. - P. 65.

79. Dick S. С ., Т anin L.V., Vasilevskaya L.A. et al. // Light and biological systems: intern. conf. - Wroclaw, 1995.

80. Giraldez R.R., Panda A., Xia Y . et al. // J. Biol. Chem. - 1997. - Vol. 272, N 34. - P. 21420-21426.

81. Jin J.S., Webb R.C., D,Alecy L.G. // Am. J. Physiol. - 1995. - Vol. 269, N 1. - P. H254-H261.

82. Karu T . // Proc. of the 2nd Intern. Conf. on Bioelectromagnetism. - Melburn, 1998. - P. 125-126.

83. Kosaka H . // Biochem. Biophys. Acta. - 1999. - Vol. 1411, N 2-3. - P. 370-377.

84. Lascola C . // Primer of Cerebrovascular Diseases. - San Diego: Academic Press, 1997. - P. 114-117.

85. Lavie V., Solomon A., Ben-Bassat S . et al. // Brain. Res. - 1992. - Vol. 575, N 1. - Р. 1-5.

86. Lubart R., Wollman Y., Friedmann H . et al. // J. Photochem. Photobiol. - 1992. - Vol. 12, N 3. - Р. 305-310.

87. Pogrel M.A., Chen I.W., Zhang K . // Lasers Surg. Med. - 1997. - Vol. 20, N 4. - P. 426-432.

88. Rubino A., Yellon D. // Trends Pharmacol. Sci. - 2000. - Vol. 21, N 6. - Р. 225-230.

89. Siddhanta U. , Wu C., Abu-Soud H.M. // J. Biol. Chem. - 1996. - Vol. 271, N 13. - Р. 7309-7312.

90. Siesjo B.K. // Cerebrovasc. Brain Metab. Rev. - 1989. - Vol. 1, N 3. - Р. 165-211.

91. Sroka R., Fuchs C., Schaffer M. et al. // Lasers Surg. Med. - 1997. - Suppl. 9. - P. 6.

92. Stuehr D.J., Ikeda-Saito M . // J. Biol. Chem. - 1992. - Vol. 267, N 29. - Р. 20547-20550.

93. Tanin L.V., Petrovsky G.G., Tanina R.M . Abstract Book European biomechanical optics week, BIOS Europe’96, Austria. - Vienna, 1996.

94.Taylor C.T., Lisco S.J., Awtrey C.S., Colgan S.P. // J. Pharmacol. Exp. Ther. - 1998. - Vol. 284, N 2. - Р. 568-575.

95. Zalesskaya G.A., Sambor E.G., Nechipurenko N.I . // Proc. of SPIE. - 2006. - Vol. 6257. - P. 1-8.

Медицинские новости. - 2008. - №12. - С. 17-21.

Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.



Новое на сайте

>

Самое популярное